

Exceptional drilling results extend intrusive-hosted mineralisation at CEL's Hualilan Gold Project

Highlights

- New drilling at Hualilan has delivered several significant intersections including (refer Table 1):
 - 69.2m at 3.4 g/t AuEq² 3.3 g/t Au, 4.8 g/t Ag, 0.1% Zn from 9.0m including;
 12.0m at 1.8 g/t AuEq² 1.7 g/t Au, 0.7 g/t Ag, 0.1% Zn from 17.0m and
 9.2m at 22.2 g/t AuEq² 21.9 g/t Au, 16.0 g/t Ag, 0.4% Zn from 69.0m (GNDD-196)
 - 44.0m at 3.3 g/t AuEq² 3.2 g/t Au, 4.5 g/t Ag, 0.1 % Zn from 95.0m including;
 20.6m at 6.6 g/t AuEq² 6.4 g/t Au, 6.4 g/t Ag 0.1 % Zn from 97.4m within a wider zone of 89 metres at 1.7 g/t AuEq² (includes 20m of barren limestone) (GNDD-204)
 - 73.7 m at 0.6 g/t AuEq² -- 0.5 g/t Au, 1.4 g/t Ag, 0.2 % Zn from 170m including 35.7m at 1.1 g/t AuEq² 0.8 g/t Au, 2.6 g/t Ag, 0.4% Zn from 208m including 13.0m at 2.3 g/t AuEq² 1.9 g/t Au, 5.0 g/t Ag, 0.8% Zn from 212m (GNDD-208);
 - 66.8m at 0.6 g/t AuEq² 0.6g/t Au, 0.6 g/t Ag, 0.1% Zn from 60.8m (GNDD-200);
 - 59.3m at 0.5 g/t AuEq² 0.4g/t Au, 4.7 g/t Ag, 0.2% Zn from 71.8m within a wider 110 metre mineralised zone from near surface (GNDD-202)
- GNDD-196 (69.2m at 3.4 g/t AuEq²) and GNDD-202 extended the near surface mineralisation at Magnata 200 metres north along strike and open a significant drill target to the north.
- GNDD-202 defines a zone 100 metres thick down dip to the west of GNDD-196 with GNDD-224 (assays pending) intersecting 130 metres of sulphides further down-dip of GNDD-202
- Infill holes in the Gap Zone, GNDD-204 and GNDD-208, find unexpected high-grade zones indicating steeply dipping high-grade in the intrusive within an east-dipping mineralised zone.
- Drilling results continue to support high grade low capex starter operation consistent with corporate strategy

Commenting on the results, CEL Managing Director, Mr Kris Knauer, said

"Another excellent set of results from our flagship Hualilan Gold project. The intercepts in GNDD-196 and 202 open a major target for extension of the intrusion-hosted mineralisation at least 400 metres along strike. Given the significant width of the mineralisation in both holes and the attractive grade success stepping further north along strike has the potential to add ounces very quickly.

The infill drilling in the Gap Zone mineralisation has also been encouraging. The first holes from a series of holes drilled in the opposite direction to confirm the true width of the mineralisation in the Gap Zone, have intersected mineralisation in intrusives 60 to 80 metres thick. Importantly, this drilling has intersected some unexpected high-grade zones, leading us to believe the high-grade mineralisation in the intrusives is more extensive than we had anticipated."

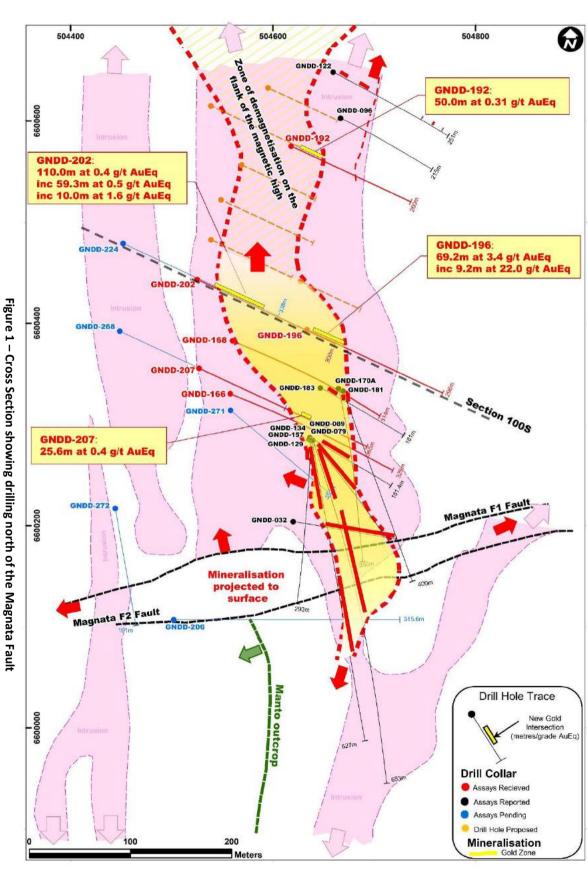
Challenger Exploration (ASX: CEL) ("CEL" the "**Company**") is pleased to announce results from drilling which targeted the intrusion-hosted mineralisation at the Company's flagship Hualilan Gold project in San Juan, Argentina. The results are from a series of holes designed to test for:

- extensions to the main zone of Intrusion-hosted mineralisation at Magnata, and;
- infill and extend the intrusion-hosted mineralisation in the Gap Zone.

The highlights were GNDD-196, which intersected 69.2m at 3.4 g/t AuEq (3.3 g/t gold, 4.8 g/t silver, 0.1% zinc) from 9.0m. Additionally, follow up hole GNDD-202, collared to test 100 metres down dip of GNDD-196, intersected over 100 metres of mineralisation as did GNDD-277 (assays pending) a further 50 metres down dip. These holes have extended the zone of intrusive hosted mineralisation at Magnata 200 metres north along strike and opened a significant drilling target for extensions to this mineralisation a further 400 metres north along a geophysical target which correlates well with the zones of intrusion-hosted mineralisation at Hualilan. Extension of this zone of mineralisation to the north, given the true width of 100 metres, 250 metres of down plunge extent, attractive grades in GNDD-196 as well as at least 400 metres of strike, has the potential to add significant tonnes of mineralisation.

GNDD-204 and GNDD-208 are the first in a series of holes which have been drilled in the reverse orientation of the earlier drilling to drill back across the Gap Zone mineralisation to better define the width of the mineralisation. These holes confirmed the true width of the Gap Zone mineralisation is 60-70 metres. These first holes were drilled back across what were believed to be lower grade parts of the Gap Zone mineralisation based on the earlier drilling. The high-grade results which include 44.0m at 3.3 g/t AuEq (3.2 g/t gold, 4.5 g/t silver 0.1 % zinc) in GNDD-204 and 35.7m at 1.1 g/t AuEq (0.8 g/t gold, 2.6 g/t silver 0.4 % zinc) in GNDD-208 were unexpected. This is encouraging as it demonstrates the high-grade shoots within the intrusives are possibly more extensive than first anticipated. The interpreted higher-grade, and deeper, sections of the Gap Zone mineralisation have been targeted in subsequent drill holes (assays pending).

DISCUSSION OF RESULTS


Magnata Intrusion-hosted mineralisation

Drilling north and south of the Magnata Fault has defined a zone of intrusion-hosted mineralisation covering 300 metres of strike from GNDD-174 (40m at $0.6 \, \text{g/t}$ AuEq) in the south through GNDD-032 (116m at $1.2 \, \text{g/t}$ AuEq) to GNDD-079 (61m at $1.2 \, \text{g/t}$ AuEq) in the north. The mineralisation is 50-100 metres true width and dips steeply to the west starting from surface near the Magnata Fault to under shallow cover as the zone progresses to the north. Following the results from GNDD-196 and GNDD-202 this mineralisation remains strong and open to the north along strike.

GNDD-196

GNDD-196 was collared approximately 100 metres north of GNDD-079 which intersected 61m at 1.2 g/t AuEq and was the most northerly of the drill holes to intersect significant intrusion-hosted mineralisation north of the Magnata Fault.

Issued Capital 658.2m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

The intersection in GNDD-196 of **69.2m** at **3.4** g/t AuEq **(3.3** g/t gold, **4.8** g/t silver, **0.1%** zinc) from 9.0m including **12.0m** at **1.8** g/t AuEq **(1.7** g/t gold, **0.7** g/t silver, **0.1%** zinc) from 17.0m and **9.2m** at **22.2** g/t AuEq **(21.9** g/t gold, **16.0** g/t silver, **0.4%** zinc) from 69.0m has confirmed that the intrusion hosted mineralisation remains strong and open to the north. The broader gold zone is composed of higher grade and lower grade mineralised shoots typical of the intrusion-hosted mineralisation at Hualilan.

GNDD-196 was collared 50 metres north of GNDD-168 which had intersected **58.0 metres at 0.3 g/t AuEq (0.2 g/t gold, 2.2 g/t silver, 0.2 % zinc)** from 50.0m and 27.8 metres at 0.2 g/t AuEq (0.2 g/t gold, 1.4 g/t silver, 0.1 % zinc) from 164m. This hole and GNDD-166 collared a further 50 metres south had pointed to the intrusion-hosted mineralisation weakening to the north. Thus, the results of GNDD-196, and GNDD-202 downdip, are highly significant as they open the potential for the intrusion-hosted mineralisation to extend at least another 400 metres further north along strike. Additionally, the width of the mineralisation appears to be increasing to the north.

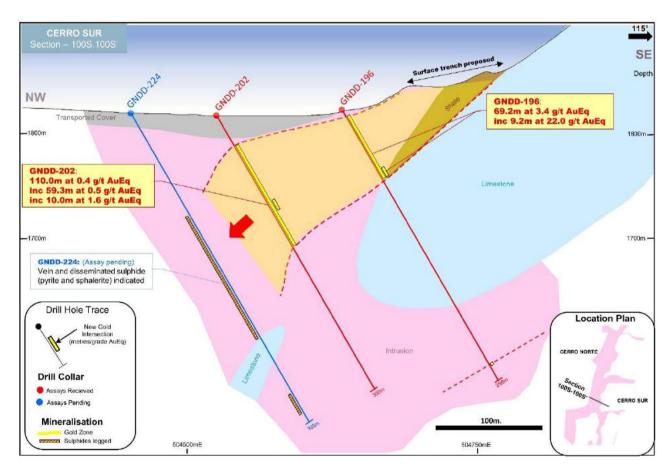


Figure 2 - Section showing the extensions to the intrusion-hosted mineralisation north of the Magnata Fault

GNDD-202

GNDD-202 was collared to test 100 metres down-dip of drill hole GNDD-196. The intersection of **110m** at **0.4** g/t AuEq (**0.3** g/t gold, **3.1** g/t silver, **0.1%** zinc) from 33.0 metres including **59.3m** at **0.5** g/t

AuEq (0.4g/t gold, 4.7 g/t silver, 0.2% zinc from 71.8m confirmed the extension of a broad zone of intrusion-hosted mineralisation 100 metres down-dip from GNDD-196.

As can be seen in section (Figure 2) this zone of mineralisation appears to be 100 metres true thickness and dips shallowly to the east. GNDD-277 (assays pending) which was collared to test a further 50 metres below GNDD-202 and has been logged as intersecting 130 metres of sulphide mineralisation in altered intrusives from 107 metres downhole. As has been observed in other parts of the deposit, shallowly west dipping mineralisation (including in shale) can cap steeper zones of mineralisation, centred on intrusions. This will be considered as exploration steps west down-dip of GNDD-202 and GNDD-227.

Planned Drilling

Given the encouraging results of GNDD-196 and GNDD-202 the Company has changed its planned drill program to test this potential significant extension to the north. This target is shown in Figure 3, which shows current and planned drilling on the analytical signal (AS) of the reduced to pole (RTP) ground magnetic survey. The majority of the intrusion-hosted mineralisation in the Gap Zone, and also south towards the Magnata Fault, is located on the flanks of a positive magnetic anomaly. The lower intensity magnetic signals on the flanks are interpreted as de-magnetisation by alteration of the intrusions associated with the mineralisation.

This trend of de-magnetisation on the flank of a magnetic high continues for at least 400 metres north along strike from GNDD-196 with the only drill hole to test this zone (GNDD-192) intersecting **50.0** metres at **0.3** g/t AuEq (**0.3** g/t gold, **0.6** g/t silver **0.1%** zinc) from 15 metres with this intercept coinciding with the geophysical target (the de-magnetised zone). Extension of this zone of mineralisation to the north, given the true width of 100 metres, 250 metres of down plunge extent, attractive grades in GNDD-196 and at least 400 metres of strike, has the potential to add significant tonnes of mineralisation.

Gap Zone

The intrusive hosted mineralisation in the Gap Zone had been defined over approximately 300 metres of strike and, unlike the mineralisation north and south which dips to the west, the Gap Zone mineralisation dips to the east. The mineralisation was likely capped by a west-dipping zone of mineralisation in the shale which has since been eroded and covered. Remnants of the mineralised cap have been intersected in holes drilled west of the Gap Zone. Earlier drilling such as GNDD-139 (207.5m at 0.8 g/t AuEq) was oriented parallel to the dip of the mineralisation so the true width of the mineralisation, was yet to be determined.

Drillholes GNDD-200, GNDD-204, GNDD-208, GNDD-211, GNDD-215 and GNDD-218 are the first in a series of 16 holes which has been drilled in the reverse orientation of the earlier drilling in order to drill back across the Gap Zone mineralisation to better define the width of the mineralisation. This series of holes have been designed to not only infill the existing mineralisation but to test for extensions south along strike and downdip and to allow more precise resource estimation.

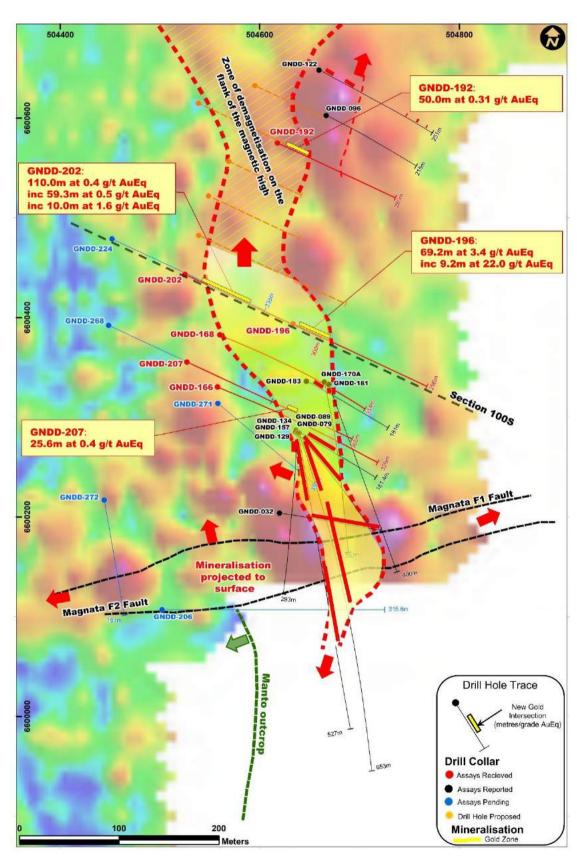


Figure 3 - Magnetic Analytical Signal showing potential extension to the north and planned drilling

GNDD-204

GNDD-204 was drilled back across the upper part of GNDD-139 (207.5m at 0.8 g/t AuEq). The hole encountered the gold zone mineralisation over 89 metres down hole, which indicates an approximate true width of 60-70. The drill hole intersected 20 metres of barren limestone interpreted as a limestone block within the intrusives. Including the 20 metres of barren limestone as waste GNDD-204 returned an intercept across the entire mineralised zone of intrusives, and barren limestone, of 89 metres at 1.7 g/t AuEq. This broader gold zone intercept includes 44.0m at 3.3 g/t AuEq (3.2 g/t gold, 4.5 g/t silver 0.1 % zinc) from 95 metres and contains a higher grade zone of 20.6m at 6.6 g/t AuEq (6.4 g/t gold, 6.4 g/t silver 0.1 % zinc) in the upper part of the gold zone intercept.

GNDD-204 was drilled back across the lower grade upper portion of the intercept in GNDD-139 in what was believed to be lower grade part of the Gap Zone mineralisation based on the earlier drilling. Thus, the high-grade results in GNDD-204 were unexpected and indicates that the high grade shoots within the intrusives may be more pervasive than first anticipated and may have more than one orientation.

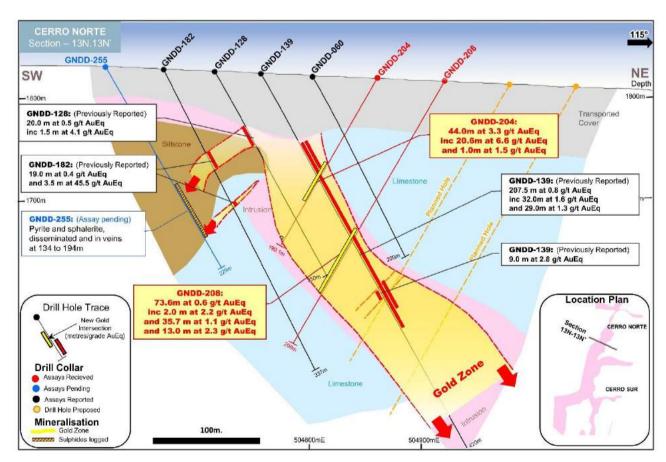


Figure 4 - Cross Section Gap Zone Mineralisation

GNDD-208

GNDD-208 was drilled to intercept the gold zone approximately 75m down dip of GNDD-204. The hole intercepted 73.7m at 0.6 g/t AuEq (0.5 g/t gold, 1.4 g/t silver 0.2 % zinc) from 170.0 metres with a higher-grade intercept of 35.7m at 1.1 g/t AuEq (0.8 g/t gold, 2.6 g/t silver 0.4 % zinc) including 13.0m at 2.3 g/t AuEq (1.9 g/t gold, 5.0 g/t silver 0.8 % zinc) in the lower part of the gold zone intercept.

Challenger Exploration Limited ACN 123 591 382 ASX: CEL Issued Capital 658.2m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

The higher-grade part of the intercept in GNDD-208 is interpreted to join to the higher grade intercept in GNDD-204 to form a steeply dipping, higher-grade zone of mineralisation within the broader gold zone. This mineralisation is controlled by a swarm of steeply dipping narrow veins observed in the drill core.

GNDD-204 and GNDD-208 both intersected GNDD-139 at points of lower grade within the intercept of 207.5m at 0.8 g/t AuEq. As such the high-grades in GNDD-204 and GNDD-208 were unexpected. This is important because this demonstrates that the high-grade shoots within the intrusive in the Gap Zone are possibly more extensive than the Company had first anticipated.

GNDD-211

GNDD-211 was collared 40m along strike, north of GNDD-208. The hole intersected **23.2m at 0.6 g/t AuEq (0.5 g/t gold, 0.8 g/t silver 0.1 % zinc)** at a lower grade portion of the intersection with GNDD-155 (209.0m at 1.1 g/t AuEq). As demonstrated in the section for GNDD-204 and GNDD-208, the gold zone is grade-variable and it is believed that GNDD-211 intersected a lower grade part of the zone. Drill hole GNDD-277 (assays pending) intersected the gold zone approximately 80 metres up dip of GNDD-211 which has been logged as intersecting intrusives with strong alteration and sulphide mineralisation over 83 metres from 59m downhole.

GNDD-215

GNDD-215 is located 40m south of GNDD204 and is drilled back across the upper part of GNDD-113A (314m at 0.8 g/t AuEq). Two mineralised intersections within GNDD-215 were found with only low grades intersected where the hole crossed GNDD-113A. An upper zone of 14.6m at 1.6 g/t AuEq (1.4 g/t gold, 2.4 g/t silver, 0.3% zinc) in shale, and a lower zone of 41.0m at 0.2 g/t AuEq (0.2 g/t gold, 3.1 g/t silver, 0.1% zinc) in intrusion indicate that GNDD-215 intersected the uppermost part of the gold zone. Approximately 80m down-dip from GNDD-215, hole GNDD-262 has intersected approximately 70 metres of mineralisation in intrusion and breccia with assays pending. The highest grade intersection within GNDD-113A is a further 60 metres down dip from GNDD-262 and is targeted for future drilling.

GNDD-188

GNDD-188 was collared 50 metres south of GNDD-113A and returned 66.0m at 0.4 g/t AuEq (0.3 g/t gold, 6.6 g/t silver, 0.1% zinc) from 198m including 4.0m at 1.3 g/t AuEq (0.9 g/t gold, 21.9 g/t silver, 0.2% zinc), and 4.6m at 1.3 g/t AuEq (1.1 g/t gold, 4.5 g/t silver, 0.4% zinc).

GNDD-188 is significant for two reasons:

- 1. It extends the broad zone of mineralisation in intrusives encountered in earlier drilling a further 50 metres south along strike from GNDD-113A.
- 2. It extends the mineralisation to the west of drill holes GNDD-051 and GNDD-109 which are located on the same fence of holes as GNDD-113A. GNDD-051 and GNDD-109 encountered un-mineralised intrusive breccia interpreted as being post mineral. This breccia is also present in GNDD-105, GNDD-101, and GNDD-153 located 50 metres further south along strike from GNDD-188. This confirms that the Gap Zone mineralisation is still open to the south along strike

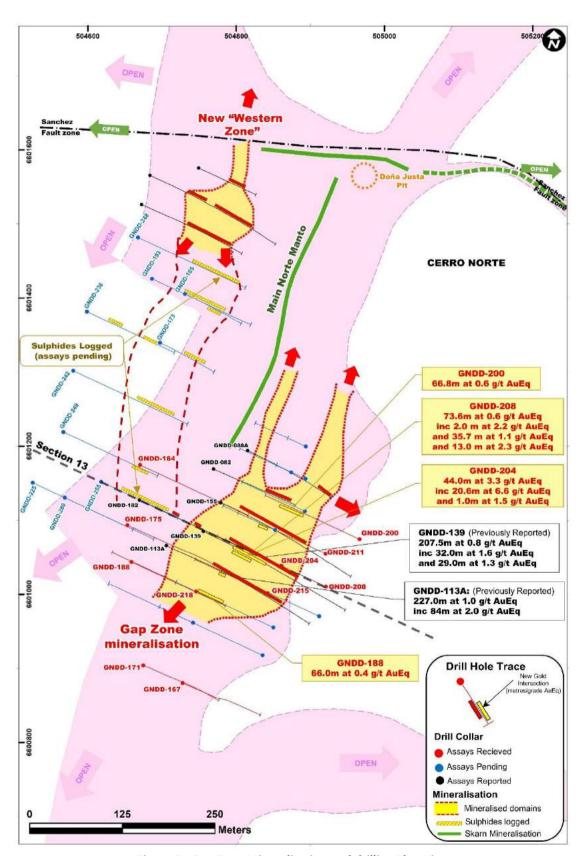


Figure 5 - Gap Zone Mineralisation and drilling Plan View

Issued Capital 658.2m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

GNDD-200

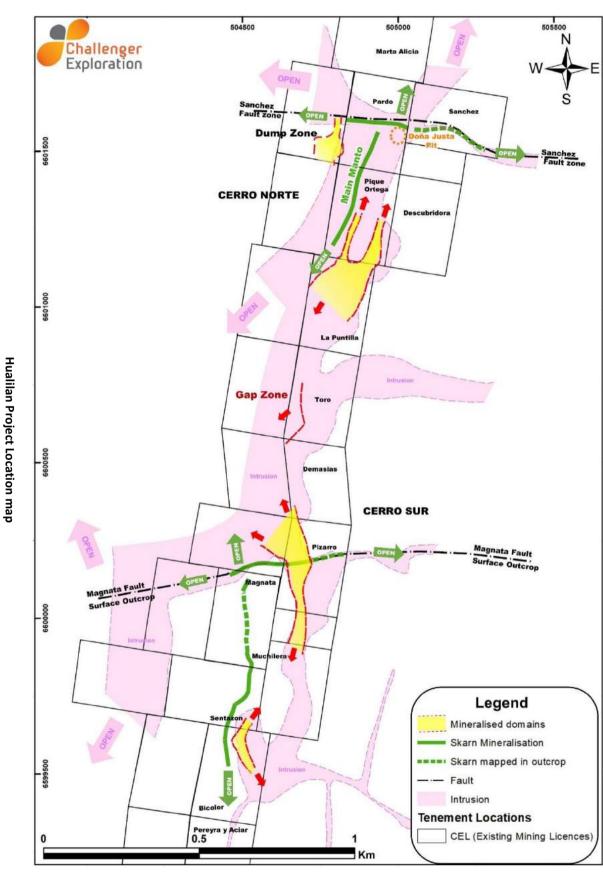
GNDD-200 was drilled 40 metres north of GNDD-211 back across GNDD-077 (14.0m at 1.1 g/t AuEq) and GNDD-082 (110.0m at 0.4 g/t AuEq from 156.0m to the end of the hole). The hole was drilled to determine the true width of the intrusive hosted mineralisation and the relationship between mineralisation intersected in GNDD-77 and GNDD-082 at the northern end of the Gap Zone. GNDD-082 encountered mineralisation in intrusives in three zones and ended in mineralisation grading 0.7 g/t gold.

GNDD-200 intercepted 66.8m at 0.7 g/t AuEq (0.6g/t gold, 0.6 g/t silver, 0.1% zinc) from 60.8 metres including 7.2m at 1.1 g/t AuEq (1.0g/t gold, 0.6 g/t silver) and 6.0m at 1.1 g/t AuEq (1.1g/t gold, 0.6 g/t silver) and 1.0m at 5.3 g/t AuEq (4.7g/t gold, 5.6 g/t silver, 1/3% zinc). The mineralisation intersected in GND-200 bridges exactly the space between GNDD-077 and GNDD-082. This confirms the true width of the mineralisation at the north of the Gap Zone at approximately 60 metres. The gold zone at this location remains open down dip with an obvious follow-up target in this area.

Ends

This ASX announcement was approved and authorised by the Board.

For further information contact:


Kris Knauer Scott Funston Media Enquiries
Managing Director Chief Financial Officer Jane Morgan
+61 411 885 979 +61 413 867 600 +61 405 555 618

kris.knauer@challengerex.com scott.funston@challengerex.com jm@janemorganmanagement.com.au

Previous announcements referred to in this release include:

27 July 2020 - CEL BUILDS ON NEW GOLD DISCOVERY AT HUALILAN WITH A SECOND SIGNIFICANT INTERSECTION 1KM ALONG STRIKE 30 oct 2020 - DRILLING CONFIRMS MAJOR INTRUSION-HOSTED GOLD SYSTEM UNDERLYING THE HIGH-GRADE MINERALISATION 23 Nov 2020 - MULTIPLE HIGH-GRADE INTERCEPTS IN EXPLORATION DRILLING AT HUALILAN 29 Jan 2021 - DRILLING CONTINUES TO EXTEND THE BOUNDARIES OF THE HIGH-GRADE MINERALISATION AT HUALILAN GOLD PROJECT 2 Feb 2021 - 131 METRES AT 2.5 G/T AUEQ2 IN NEW ZONE AT HUALILAN

Issued Capital 658.2m shares 86.6m options 120m perf shares 16m perf rights **Australian Registered Office** Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Table 1: New intercepts reported.

Drill Hole	From	То	Interval	Gold	Ag	Zn	Au Equiv	Comments
(#)	(m)	(m)	(m)	(g/t)	(g/t)	(%)	(g/t)	
Magnata								
GNDD192	15.00	65.00	50.00	0.3	0.6	0.1	0.3	0.2/g/t AuEq cut
inc	28.00	48.00	20.00	0.4	0.6	0.1	0.5	0.2/g/t AuEq cut
and	107.45	109.20	1.75	0.5	8.2	0.1	0.7	0.2/g/t AuEq cut
and	176.00	176.60	0.60	1.2	24.8	7.0	4.6	
GNDD196	9.00	78.20	69.20	3.3	4.8	0.1	3.4	0.2/g/t AuEq cut
inc	17.00	29.00	12.00	1.7	0.7	0.1	1.8	
inc	69.00	78.20	9.20	21.9	16.0	0.4	22.2	
inc	69.00	70.30	1.30	136.5	47.6	0.2	137.2	10/g/t AuEq cut
and	279.50	280.10	0.60	2.0	0.2	0.0	2.0	
GNDD202	33.00	143.00	110.00	0.3	3.1	0.1	0.4	0.2/g/t AuEq cut
inc	71.75	131.00	59.25	0.4	4.7	0.2	0.5	0.2/g/t AuEq cut
inc	98.00	108.00	10.00	1.0	21.7	0.7	1.6	
inc	127.00	129.00	2.00	1.2	1.1	0.0	1.2	
GNDD207	114.00	114.90	0.90	2.0	1.9	0.1	2.1	
and	122.55	125.00	2.45	8.5	15.5	1.0	9.1	
and	169.50	173.00	3.50	0.2	68.2	0.1	1.1	0.2/g/t AuEq cut
inc	170.70	173.00	2.30	0.2	98.2	0.2	1.5	. 70/
and	217.40	243.00	25.60	0.4	0.9	0.0	0.4	0.2/g/t AuEq cut
inc	233.00	237.00	4.00	1.4	0.6	0.0	1.4	0.2/8/07.029
and	269.35	271.30	1.95	1.7	3.4	0.3	1.9	
Gap Zone	203.55	271.50	1.55	1.7	3.1	0.5	1.3	
GNDD167	NSI							
GNDD171	126.00	136.75	10.75	0.4	1.9	0.1	0.5	0.2/g/t AuEq cut
inc	134.00	135.40	1.40	1.1	5.9	0.8	1.5	0.2/g/t/talq cat
and	193.00	196.90	3.90	0.3	0.4	0.0	0.3	0.2/g/t AuEq cut
and	270.00	270.50	0.50	1.3	2.5	0.7	1.6	0.2/g/t/talq cat
and	327.00	329.60	2.60	1.9	6.1	1.1	2.4	
GNDD175	176.00	182.00	6.00	0.3	6.3	0.1	0.5	0.2/g/t AuEq cut
GNDD173 GNDD184	NSI	102.00	0.00	0.5	0.5	0.1	0.5	0.2/g/t Aulq cut
GNDD184 GNDD188	198.00	264.00	66.00	0.3	6.6	0.1	0.4	0.2/g/t AuEq cut
inc	212.00	216.00	4.00	0.9	21.9	0.1	1.3	0.2/g/t AuLy cut
inc	252.00	256.55	4.55	1.1	4.5	0.4	1.3	
	1	235.00			0.6		0.6	0.2/2/+ ΔυΓα ου+
GNDD200	168.25 176.45	183.60	66.75 7.15	0.6 1.0	0.6	0.1	1.1	0.2/g/t AuEq cut
inc inc	208.00	214.00	6.00	1.1	0.6	0.0	1.1	
	232.00	233.00	1.00	4.7	5.6	1.3	5.3	
inc								0.2/-/- 4
GNDD204	95.00	139.00	44.00	3.2	4.5	0.1	3.3	0.2/g/t AuEq cut
inc	97.38	118.00	20.62	6.4	6.4	0.1	6.6	
and	183.00	184.00	1.00	1.2	6.7	0.4	1.5	0.2/-/- 4
GNDD208	170.00	243.65	73.65	0.5	1.4	0.2	0.6	0.2/g/t AuEq cut
inc	180.00	182.00	2.00	2.2	0.9	0.0	2.2	0.2/=/+ 4=
inc	208.00	243.65	35.65	0.8	2.6	0.4	1.1	0.2/g/t AuEq cut
inc	212.00	225.00	13.00	1.9	5.0	0.8	2.3	0.01 /: -
GNDD211	168.80	192.00	23.20	0.5	0.8	0.1	0.6	0.2/g/t AuEq cut
inc	177.10	181.45	4.35	1.5	2.0	0.3	1.6	/ /
GNDD215	126.20	140.80	14.60	1.4	2.4	0.3	1.6	0.2/g/t AuEq cut
inc	132.50	140.80	8.30	2.1	2.1	0.4	2.3	
and	159.00	200.00	41.00	0.2	3.1	0.1	0.2	0.2/g/t AuEq cut
GNDD218	198.00	203.05	5.05	0.4	0.2	0.0	0.4	0.2/g/t AuEq cut

See next page for information regarding AuEq's reported under the JORC Code.

² Gold Equivalent (AuEq) values - Requirements under the JORC Code

- Assumed commodity prices for the calculation of AuEq is Au US\$1780 Oz, Ag US\$24 Oz, Zn US\$2,800 /t
- Metallurgical recoveries for Au, Ag and Zn are estimated to be 89%, 84% and 79% respectively (see JORC Table 1
 Section 3 Metallurgical assumptions) based on metallurgical test work.
- The formula used: $AuEq(g/t) = Au(g/t) + [Ag(g/t) \times (24/1780) \times (0.84/0.89)] + [Zn(\%) \times (28.00*31.1/1780) \times (0.79/0.89)]$
- CEL confirms that it is the Company's opinion that all the elements included in the metal equivalents calculation have a reasonable potential to be recovered and sold.

About Challenger Exploration

Challenger Exploration Limited's (ASX: CEL) aspiration is to become a globally significant gold producer. The Company is developing two complementary gold/copper projects in South America. The strategy for the Hualilan Gold project is for it to provide a high-grade low capex operation in the near term. This underpins CEL with a low risk, high margin source of cashflow while it prepares for a much larger bulk gold operation in Ecuador.

- 1. **Hualilan Gold Project**, located in San Juan Province Argentina, is a near term development opportunity. It has extensive historical drilling with over 150 drill-holes and a non-JORC historical resource ⁽¹⁾ of 627,000 Oz @ 13.7 g/t gold which remains open in most directions. The project was locked up in a dispute for the past 15 years and as a consequence had seen no modern exploration until CEL acquired the project in 2019. Results from CEL's first drilling program included 6.1m @ 34.6 g/t Au, 21.9 g/t Ag, 2.9% Zn, 6.7m @ 14.3 g/t Au, 140 g/t Ag, 7.3% Zn and 10.3m @ 10.4 g/t Au, 28 g/t Ag, 4.6% Zn. This drilling intersected high-grade gold over almost 2 kilometres of strike and extended the known mineralisation along strike and at depth in multiple locations. Recent drilling has demonstrated this high-grade skarn mineralisation is underlain by a significant intrusion-hosted gold system with intercepts including 116m at 1.0 g/t Au, 4.0 g/t Ag, 0.2% Zn and 39.0m at 5.5 g/t Au, 2.0 g/t Ag, 0.3% Zn in porphyry dacites. CEL's current program includes 45,000 metres of drilling, metallurgical test work of key ore types, and an initial JORC Compliant Resource and PFS.
- 2. El Guayabo Gold/Copper Project covers 35 sqkms in southern Ecuador and was last drilled by Newmont Mining in 1995 and 1997 targeting gold in hydrothermal breccias. Historical drilling has demonstrated potential to host significant gold and associated copper and silver mineralisation. Historical drilling has returned a number of intersections including 156m @ 2.6 g/t Au, 9.7 g/t Ag, 0.2% Cu and 112m @ 0.6 % Cu, 0.7 g/t Au, 14.7 g/t which have never been followed up. The Project has multiple targets including breccia hosted mineralisation, an extensive flat lying late stage vein system and an underlying porphyry system target neither of which has been drill tested. CEL's first results confirm the discovery of large-scale gold system with over 250 metres of bulk gold mineralisation encountered in drill hole ZK-02 which contains a significant high-grade core of 134m at 1.0 g/t gold and 4.1 g/t silver including 63m at 1.6 g/t gold and 5.1 g/t silver.

Foreign Resource Estimate Hualilan Project

La Mancha Resources 2003 foreign resource estimate for the Hualilan Project ^										
Category	Tonnes (kt)	Gold Grade (g/t)	Contained Gold (koz)							
Measured	218	14.2	100							
Indicated	226	14.6	106							
Total of Measured & Indicated	445	14.4	206							
Inferred	977	13.4	421							
Measured, Indicated & Inferred	1,421	13.7	627							

[^] Source: La Mancha Resources Toronto Stock Exchange Release dated 14 May 2003 -Independent Report on Gold Resource Estimate.
Rounding errors may be present. Troy ounces (oz) tabled here

#¹ For details of the foreign non-JORC compliant resource and to ensure compliance with LR 5.12 please refer to the Company's ASX Release dated 25 February 2019. These estimates are foreign estimates and not reported in accordance with the JORC Code. A competent person has not done sufficient work to clarify the foreign estimates as a mineral resource in accordance with the JORC Code. It is uncertain that following evaluation and/or further exploration work that the foreign estimate will be able to be reported as a mineral resource. The company is not in possession of any new information or data relating to the foreign estimates that materially impact on the reliability of the estimates or CEL's ability to verify the foreign estimates estimate as minimal resources in accordance with Appendix 5A (JORC Code). The company confirms that the supporting information provided in the initial market announcement on February 25, 2019 continues to apply and is not materially changed.

Competent Person Statement – Exploration results

The information that relates to sampling techniques and data, exploration results and geological interpretation has been compiled Dr Stuart Munroe, BSc (Hons), PhD (Structural Geology), GDip (AppFin&Inv) who is a full-time employee of the Company. Dr Munroe is a Member of the AusIMM. Dr Munroe has over 20 years' experience in the mining and metals industry and qualifies as a Competent Person as defined in the JORC Code (2012).

Dr Munroe has sufficient experience of relevance to the styles of mineralisation and the types of deposits under consideration, and to the activities undertaken, to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting of Exploration Results. Dr Munroe consents to the inclusion in this report of the matters based on information in the form and context in which it appears. The Australian Securities Exchange has not reviewed and does not accept responsibility for the accuracy or adequacy of this release.

Competent Person Statement - Foreign Resource Estimate

The information in this release provided under ASX Listing Rules 5.12.2 to 5.12.7 is an accurate representation of the available data and studies for the material mining project. The information that relates to Mineral Resources has been compiled by Dr Stuart Munroe, BSc (Hons), PhD (Structural Geology), GDip (AppFin&Inv) who is a full-time employee of the Company. Dr Munroe is a Member of the AusIMM. Dr Munroe has over 20 years' experience in the mining and metals industry and qualifies as a Competent Person as defined in the JORC Code (2012).

Dr Munroe and has sufficient experience which is relevant to the style of mineralisation and type of deposits under consideration to qualify as Competent Person as defined in the 2012 Edition of the JORC Code for Reporting of, Mineral Resources and Ore Reserves. Dr Munroe consents to the inclusion in this report of the matters based on information in the form and context in which it appears. The Australian Securities Exchange has not reviewed and does not accept responsibility for the accuracy or adequacy of this release.

JORC Code, 2012 Edition – Table 1 report template

Section 1 Sampling Techniques and Data - Hualilan Project

Criteria	JORC Code explanation	Commentary				
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or 	For historic exploration data, there is little information provided by previous explorers to detail sampling techniques. Drill core was cut with a diamond saw longitudinally and one half submitted for assay. Assa was generally done for Au. In some drill campaigns, Ag and Zn were also analysed. There is limited multielement data available. No information is available for RC drill techniques and sampling.				
	handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. - Include reference to measures taken to ensure sample	For CEL drilling, diamond core (HQ3) was cut longitudinally on site using a diamond saw. Samples length are from 0.5m to 2.0m in length (average 1m), taken according to lithology, alteration, and mineralization contacts.				
	representivity and the appropriate calibration of any measurement tools or systems used. - Aspects of the determination of mineralisation that are	For CEL reverse circulation (RC) drilling, 2-4 kg sub-samples from each 1m drilled are collected from a face sample recovery cyclone mounted on the drill machine.				
	Material to the Public Report. - In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg	CEL channel samples are cut into underground or surface outcrop using a hand-held diamond edged cutting tool. Parallel saw cuts 3-5cm apart are cut 2-4cm deep into the rock which allows for the extraction of a representative sample using and hammer and chisel. The sample is collected onto a plastic mat and collected into a sample bag.				
	was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types	other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types	other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types	other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types	Core and channel samples were crushed to approximately 85% passing 2mm. A 500g or a 1 kg subsample was taken and pulverized to 85% passing 75 μ m. A 50g charge was analysed for Au by fire assay with AA determination. Where the fire assay grade is > 10 g/t gold, a 50g charge was analysed for Au by Fire assay with gravimetric determination.
		A 10g charge was analysed for 48 elements by 4-acid digest and ICP-MS determination. Elements determined were Ag, As, Ba, Be, Bi, Ca, Ce, Co, Cr, Cs, Cu, Fe, Ga, Ge, Hf, In, K, La, Li, Mg, Mn, Mo, Na, Nb, Ni, P, Pb, Rb, Re, S, Sb Sc, Se, Sn, Sr, Ta, Te, Th, Ti, Tl, U, V, W, Y, Zn and Zr. Ag $>$ 100 g/t, Zn, Pb and Cu $>$ 10,000 ppm and S $>$ 10% were re-analysed by the same method using a different calibration.				
		Sample intervals were selected according to geological boundaries. There was no coarse gold observed in any of the core or channel samples.				
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond 	Collar details for diamond core drilling (DD) and reverse circulation (RC) historic drilling campaigns is provided below from archival data cross checked with drill logs and available plans and sections where available. Collars shown below are in WGS84, zone 19s which is the standard projection used by CEL for				

Challenger Exploration Limited ACN 123 591 382 ASX: CEL

Issued Capital 658.2m shares 86.6m options 120m perf shares 16m perf rights

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

tails, face-sampling bit or other type, whether core is

oriented and if so, by what method, etc).

Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Contact T: +61 8 6380 9235 E: admin@challengerex.com

the Project. Collar locations have been check surveyed using differential GPS (DGPS) by CEL to verify if

the site coincides with a marked collar or tagged drill site. In most cases the drill collars coincide with

JORC Code explanation Criteria Commentary historic drill site, some of which (but not all) are tagged. The collar check surveys were reported in POSGAR (2007) projection and converted to WGS84. North Azimuth Dip Depth East Elevation Hole id Date Type (m) (m) (m ASL) (°) (°) (m) DD 2504908.0 6602132.3 1807.6 000 -90 84.5 AG01 Jan-84 AG02 DD 2504846.5 6602041.1 1803.4 112 -70 60.0 Jan-84 AG03 DD 2504794.5 6601925.6 1803.1 080 -55 110.0 Jan-84 AG04 DD 2504797.1 6602065.5 1806.6 000 -90 168.0 Jan-84 AG05 DD 2504843.5 6601820.3 1798.1 000 -90 121.8 Jan-84 AG06 DD 2504781.9 6601922.8 1803.8 000 -90 182.2 Jan-84 AG07 DD 2504826.3 6601731.0 1796.9 000 -90 111.5 Jan-84 DD 1779.7 80.2 Jan-84 AG08 2504469.8 6600673.7 090 -57 1772.6 AG09 DD 2504455.7 6600458.5 000 -90 139.7 Jan-84 AG10 DD 2504415.5 6600263.9 1767.7 000 -90 200.8 Jan-84 AG11 DD 2504464.8 6600566.5 1775.9 000 -90 141.0 Jan-84 AG12 DD 2504847.6 6602161.7 1808.8 000 -90 171.4 Jan-84 AG13 DD 2504773.6 6601731.3 1798.7 000 -90 159.5 Jan-84 AG14 1801.2 150.2 DD 2504774.7 6601818.8 000 -90 Jan-84 AG15 DD 2504770.7 6601631.4 1796.7 000 -90 91.3 Jan-84 AG16 DD 2504429.5 6600665.8 1779.8 000 -90 68.8 Jan-84 East North Elevation Azimuth Dip Depth Hole_id Type Date (°) (°) (m) (m) (m) (m ASL) MG01 RC 2504825.5 6602755.4 1800.0 100 -60 51.0 Jan-95 2504810.5 6602755.4 MG01A RC 1800.0 100 -60 116.0 Jan-95 MG02 RC 2504835.5 6602805.4 1800.0 100 -60 90.0 Jan-95 MG03 RC 2504853.5 6602880.4 1795.0 100 -60 102.0 Jan-95 MG04 RC 2504843.5 6602975.4 1800.0 100 -60 120.0 Jan-95 MG05 RC 2506130.5 6605055.4 1750.0 85 -60 96.0 Jan-95 MG06 RC 2506005.5 6605115.4 1750.0 100 -60 90.0 Jan-95 RC 2506100.5 6605015.4 1750.0 100 MG07 -60 96.0 Jan-95 MG08 RC 2505300.5 6603070.4 1740.0 95 -70 66.0 Jan-95 RC 2505285.5 6603015.4 1740.0 0 MG09 -90 102.0 Jan-95

MG10

MG11

MG12

RC

RC

RC

2505025.5

2503380.5

2503270.5

6600225.4

6598560.5

6597820.5

1724.0

1740.0

1740.0

100

100

100

-60

-60

-60

120.0

78.0

66.0

Jan-95

Jan-95

Jan-95

Criteria	JORC Code explanation	Commenta	ry							
		Hole_id	Туре	East (m)	North (m)	Elevation (m ASL)	Azimuth (°)	Dip (°)	Depth (m)	Date
		Hua01	RC	2504845.3	6602041.2	1809.7	117	-50	60.0	1999
		Hua02	RC	2504889.5	6602081.1	1809.7	125	-55	45.0	1999
		Hua03	RC	2505003.3	6602158.6	1810.7	000	-90	100.0	1999
		Hua04	RC	2504873.3	6602169.1	1809.7	000	-90	100.0	1999
		Hua05	RC	2505003.2	6602152.6	1810.7	180	-60	100.0	1999
		Hua06	RC	2505003.3	6602161.6	1810.7	360	-60	100.0	1999
		Hua07	RC	2504967.7	6602153.2	1810.2	000	-90	100.0	1999
		Hua08	RC	2504973.2	6602153.7	1810.2	000	-90	13.0	1999
		Hua09	RC	2504940.7	6602150.3	1809.7	180	-60	100.0	1999
		Hua10	RC	2504941.8	6602156.8	1809.7	360	-60	100.0	1999
		Hua11	RC	2504913.3	6602167.4	1809.7	360	-60	88.0	1999
		Hua12	RC	2504912.8	6602165.9	1809.7	000	-90	100.0	1999
		Hua13	RC	2504912.3	6602156.9	1809.7	180	-60	90.0	1999
		Hua14	RC	2504854.3	6602168.2	1809.7	360	-60	100.0	1999
		Hua15	RC	2504854.8	6602166.2	1809.7	117	-60	100.0	1999
		Hua16	RC	2504834.2	6601877.8	1800.7	000	-90	100.0	1999
		Hua17	RC	2504865.9	6602449.8	1814.1	90	-50	42.0	1999
		Hua20	RC	2504004.1	6600846.4	1792.7	000	-90	106.0	1999
		Hua21	RC	2504552.9	6600795.0	1793.9	000	-90	54.0	1999
				East	North	Elevation	Azimuth	Dip	Depth	
		Hole_id	Type	(m)	(m)	(m ASL)	(°)	(°)	(m)	Date
		DDH20	DD	2504977.3	6602133.3	1804.8	116	-54	49.1	1999-00
		DDH21	DD	2504978.3	6602118.3	1804.8	000	-90	88.6	1999-00
		DDH22	DD	2504762.9	6601587.1	1769.8	116	-65	66.0	1999-00
		DDH23	DD	2504920.4	6601994.3	1767.9	000	-90	58.8	1999-00
		DDH24	DD	2504821.0	6601938.8	1802.0	116	-80	100.3	1999-00
		DDH25	DD	2504862.6	6601964.5	1803.7	116	-74	49.2	1999-00
		DDH26	DD	2504920.4	6601975.3	1795.0	312	-60	80.3	1999-00
		DDH27	DD	2504752.7	6601565.1	1806.6	116	-60	43.2	1999-00
		DDH28	DD	2505003.6	6602174.3	1806.6	116	-50	41.7	1999-00
		DDH29	DD	2504964.1	6602136.6	1810.0	350	-52	113.5	1999-00
		DDH30	DD	2505004.1	6602156.3	1809.3	059	-85	62.1	1999-00
		DDH31	DD	2504897.6	6602112.7	1808.1	116	-75	41.4	1999-00
		-								

Issued Capital 658.2m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commenta	ary							
		DDH32	DD	2504939.4	6602139.2	1809.1	350	-51	100.7	1999-00
		DDH33	DD	2504939.4	6602139.2	1809.1	350	-65	62.9	1999-00
		DDH34	DD	2504826.5	6601920.2	1801.3	116	-70	69.4	1999-00
		DDH35	DD	2505003.9	6602156.7	1808.8	310	-85	174.6	1999-00
		DDH36	DD	2504637.5	6600777.3	1799.9	330	-50	45.5	1999-00
		DDH37	DD	2504826.5	6601920.2	1809.4	000	-90	121.0	1999-00
		DDH38	DD	2504820.8	6601912.2	1801.1	116	-75	67.7	1999-00
		DDH39	DD	2504820.8	6601912.2	1801.1	116	-81	90.7	1999-00
		DDH40	DD	2504832.3	6601928.1	1801.7	116	-70	85.7	1999-00
		DDH41	DD	2504837.8	6601937.5	1801.6	116	-70	64.2	1999-00
		DDH42	DD	2504829.2	6601952.5	1801.8	116	-60	65.1	1999-00
		DDH43	DD	2504829.2	6601952.5	1801.8	116	-70	70.8	1999-00
		DDH44	DD	2504811.3	6601895.1	1802.0	116	-60	102.2	1999-00
		DDH45	DD	2504811.3	6601895.1	1802.0	116	-83	95.3	1999-00
		DDH46	DD	2504884.4	6601976.3	1805.9	116	-45	71.6	1999-00
		DDH47	DD	2504884.4	6601976.3	1805.9	116	-65	71.0	1999-00
		DDH48	DD	2504866.9	6601962.7	1803.1	116	-47	30.7	1999-00
		DDH49	DD	2504866.9	6601962.7	1803.1	116	-72	41.9	1999-00
		DDH50	DD	2504821.4	6601913.9	1801.1	116	-77	87.5	1999-00
		DDH51	DD	2504821.4	6601913.9	1801.1	116	-80	87.5	1999-00
		DDH52	DD	2504825.5	6601901.1	1800.9	116	-83	74.0	1999-00
		DDH53	DD	2504504.1	6600714.0	1788.7	090	-62	85.7	1999-00
		DDH54	DD	2504504.1	6600714.0	1788.7	090	-45	69.1	1999-00
		DDH55	DD	2504997.9	6602163.5	1808.6	360	-53	63.1	1999-00
		DDH56	DD	2504943.1	6602171.3	1810.5	360	-75	50.6	1999-00
		DDH57	DD	2504943.1	6602171.3	1810.5	000	-90	66.2	1999-00
		DDH58	DD	2504970.3	6602153.3	1809.1	360	-71	62.0	1999-00
		DDH59	DD	2504970.3	6602153.3	1809.1	000	-90	66.3	1999-00
		DDH60	DD	2504997.9	6602162.5	1809.0	360	-67	59.9	1999-00
		DDH61	DD	2504997.9	6602162.5	1809.0	000	-90	58.1	1999-00
		DDH62	DD	2504751.4	6601602.6	1789.2	170	-45	68.4	1999-00
		DDH63	DD	2504751.4	6601602.6	1789.2	170	-70	131.5	1999-00
		DDH64	DD	2504776.3	6601596.9	1789.1	170	-45	66.7	1999-00
		DDH65	DD	2504552.7	6600792.0	1793.8	194	-45	124.8	1999-00
		DDH66	DD	2504552.7	6600792.0	1793.8	194	-57	117.0	1999-00
		DDH67	DD	2504552.7	6600792.0	1793.8	194	-66	126.1	1999-00
		DDH68	DD	2504623.9	6600779.0	1800.7	000	-90	79.5	1999-00
		DDH69	DD	2504623.9	6600779.0	1800.7	194	-60	101.5	1999-00

Issued Capital 658.2m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commenta	ry							
		DDH70	DD	2504595.5	6600797.7	1798.1	190	-81	128.0	1999-00
		DDH71	DD	2504631.6	6600797.4	1799.0	194	-63	136.3	1999-00
		DDH72	DD	2504547.2	6600764.1	1799.6	194	-45	75.6	1999-00
		DDH73	DD	2504593.4	6600766.5	1807.5	190	-57	70.8	1999-00
		DDH74	DD	2504598.2	6600831.8	1795.3	190	-62	190.9	1999-00
		DDH75	DD	2504731.2	6600784.7	1821.4	194	-45	40.2	1999-00
		DDH76	DD	2504731.2	6600784.7	1821.4	180	-60	138.7	1999-00
		DDH77	DD	2504734.1	6600785.0	1821.6	000	-90	85.6	1999-00
		DDH78	DD	2504731.2	6600784.7	1821.4	180	-75	132.9	1999-00
		DDH79	DD	2504721.6	6600790.1	1820.4	060	-70	38.6	1999-00
		Hole_id	Тур	East	North	Elevation	Azimuth	Dip	Depth	
			е	(m)	(m)	(m ASL)	(°)	(°)	(m)	
		03HD01A		2504627.8	6600800.1	1798.4	180	-60	130	
		03HD02	DD	2504457.9	6600747.8	1782.9	180	-60	130	
		03HD03	DD	2504480.1	6600448.6	1774.0	360	-45	100	
		04HD04	DD	2504436.6	6600439.3	1773.4	360	-60	104	
		04HD05	DD	2504420.9	6600256.8	1769.5	110	-68	122	
		04HD06	DD	2504428.6	6600236.6	1768.1	110	-68	136	
		04HD07	DD	2504415.7	6600277.7	1769.0	100	-63	108	
		04HD08	DD	2504826.5	6601920.2	1801.3	116	-70	70	
		04HD09	DD	2504832.3	6601928.1	1801.7	116	-70	75	
		04HD10	DD	2504648.5	6600788.9	1801.5	205	-60	120	
		04HD11	DD	2504462.0	6600428.3	1773.6	075	-62	95	
		04HD12	DD	2504449.3	6600648.9	1779.6	360	-60	77	
		04HD13	DD	2504434.5	6600646.6	1779.7	360	-60	74	
		04HD14	DD	2504461.1	6600748.4	1783.1	180	-70	130	
		04HD15	DD	2504449.9	6600646.2	1779.6	360	-64	160	
		04HD16C		2504457.1	6600311.7	1770.3	195	-65	225	
		04HD17	DD	2504417.5	6600256.6	1769.5	110	-72	213	
		04HD18	DD	2504528.5	6600792.0	1791.9	170	-50	140	
		04HD19	DD	2504648.5	6600788.9	1801.5	205	-77	120	
		04HD20	DD	2504648.5	6600788.9	1801.5	205	-80	120	
		04HD21	DD	2504648.5	6600788.9	1801.5	205	-60	120	
		04HD23	DD	2504441.0	6600456.0	1772.5	075	-82	499	
		04HD24	DD	2504389.0	6600252.0	1766.5	090	-81	188	
		04HD25	DD	2504456.0	6600294.0	1768.5	155	-84	500	
		04HD26	DD	2504424.0	6600409.0	1771.5	180	-69	464	.9

Issued Capital 658.2m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary							
		04HD27	DD	2504461.0	6600428.0	1773.0	100	-45	60.0
		04HD28	DD	2504461.0	6600428.0	1773.0	100	-60	63.7
		04HD29	DD	2504438.0	6600087.0	1764.5	108	-45	265.0
		04HD30	DD	2504421.0	6600044.0	1764.0	108	-45	128.2
		04HD31	DD	2504687.0	6601326.0	1794.0	045	-60	242.9
		04HD32	DD	2504828.0	6601916.0	1801.3	116	-70	68.4
		05HD33	DD	2505410.0	6601983.0	1765.0	000	-60	81.4
		05HD34	DD	2505451.0	6602079.0	1763.0	273	-60	269.0
		05HD35	DD	2504905.0	6601689.0	1794.0	140	-65	350.0
		05HD36	DD	2504880.0	6601860.0	1802.0	295	-70	130.0
		05HD37	DD	2504866.0	6601888.0	1797.0	295	-70	130.0
		05HD38	DD	2504838.0	6601937.0	1796.0	115	-70	70.0
		05HD39	DD	2504964.0	6602128.0	1814.0	030	-70	217.5
		05HD40	DD	2504964.0	6602128.0	1814.0	030	-50	150.0
		05HD41	DD	2504931.0	6602125.0	1812.0	022	-60	142.5
		05HD42	DD	2504552.7	6600791.5	1797.0	194	-57	120.0
		05HD43	DD	2504552.7	6600791.5	1797.0	194	-45	95.5
		05HD44	DD	2504603.0	6600799.0	1798.0	190	-61.5	130.5
		05HD45	DD	2504362.0	6600710.0	1767.0	088	-60	121.5
		05HD46	DD	2504405.0	6600282.0	1766.0	090	-75	130.7
		05HD47	DD	2504212.0	6599177.0	1729.0	065	-45	181.5
		05HD48	DD	2504160.0	6599164.0	1728.0	065	-60	100.7

CEL drilling of HQ3 core (triple tube) was done using various truck and track mounted drill machines that are operated by various Argentinian drilling companies based in Mendoza and San Juan. The core has not been oriented.

CEL drilling of reverse circulation (RC) drill holes was done using a track-mounted LM650 universal drill rig set up for reverse circulation drilling. Drilling is being done using a 5.25 inch hammer bit.

Collar details for DD drill holes and RC drill holes completed by CEL are shown below in WGS84, zone 19s projection. Collar locations for drill holes to GNDD205 are surveyed using DGPS. Collar location from GNDD206 are surveyed with a handheld GPS to be followed up with DGPS.

Hole_id	East (m)	North (m)	Elevation (m)	Dip (°)	Azimuth (°)	Depth (m)
GNDD001	504803.987	6601337.067	1829.289	-57	115	109.0
GNDD002	504793.101	6601312.095	1829.393	-60	115	25.6

Criteria	JORC Code explanation	Commentary						
		GNDD002A	504795.405	6601311.104	1829.286	-60	115	84.5
		GNDD003	504824.427	6601313.623	1827.768	-70	115	90.2
		GNDD004	504994.416	6601546.302	1835.345	-60	115	100.0
		GNDD005	504473.042	6600105.922	1806.448	-55	090	110.0
		GNDD006	504527.975	6600187.234	1817.856	-55	170	100.9
		GNDD007	504623.738	6600196.677	1823.447	-68	190	86.3
		GNDD007A	504624.021	6600198.394	1823.379	-68	190	219.0
		GNDD008	504625.047	6600198.059	1823.457	-60	184	109.4
		GNDD008A	504625.080	6600199.718	1823.264	-60	184	169.0
		GNDD009	504412.848	6599638.914	1794.22	-55	115	147.0
		GNDD010	504621.652	6600196.048	1823.452	-68	165	146.5
		GNDD011	504395.352	6599644.012	1794.025	-64	115	169.2
		GNDD012	504450.864	6599816.527	1798.321	-55	115	120.0
		GNDD013	504406.840	6599613.052	1792.378	-58	112	141.0
		GNDD014	504404.991	6599659.831	1793.728	-59	114	140.0
		GNDD015	504442.039	6600159.812	1808.700	-62	115	166.7
		GNDD016	504402.958	6599683.437	1794.007	-60	115	172.0
		GNDD017	504460.948	6600075.899	1806.143	-55	115	132.6
		GNDD018	504473.781	6600109.152	1806.458	-60	115	130.0
		GNDD019	504934.605	6601534.429	1834.720	-70	115	80.0
		GNDD020	504463.598	6600139.107	1807.789	-58	115	153.0
		GNDD021	504935.804	6601567.863	1835.631	-60	115	120.0
		GNDD022	504835.215	6601331.069	1828.015	-60	113	100.0
		GNDD023	504814.193	6601336.790	1828.535	-55	117	100.0
		GNDD024	504458.922	6600123.135	1807.237	-70	115	150.0
		GNDD025	504786.126	6601137.698	1823.876	-60	115	141.0
		GNDD026	504813.588	6601444.189	1831.810	-55	115	100.0
		GNDD027	504416.311	6599703.996	1794.702	-55	115	139.2
		GNDD028	504824.752	6601321.020	1827.837	-57	115	100.0
		GNDD029	504791.830	6601316.140	1829.344	-71	115	120.2

Issued Capital 658.2m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary						
		GNDD030	504454.538	6599860.757	1799.266	-60	115	148.0
		GNDD031	504622.013	6600198.726	1823.191	-60	130	149.0
		GNDD032	504619.803	6600203.906	1822.790	-55	097	166.6
		GNDD033	504830.792	6601385.842	1829.315	-55	115	62.0
		GNDD034	504862.613	6601524.893	1834.263	-60	115	60.0
		GNDD035	504782.969	6601234.234	1827.709	-78	115	119.5
		GNDD036	504303.325	6599128.637	1779.458	-55	115	131.0
		GNDD037	504462.875	6599831.674	1798.456	-55	115	83.5
		GNDD038	504465.362	6600097.111	1806.580	-55	115	87.7
		GMDD039	504815.800	6601318.000	1829.100	-70	115	80.0
		GMDD040	504402.100	6599641.500	1794.800	-55	115	135.5
		GMDD041	504473.000	6600104.000	1806.400	-55	095	428.0
		GNDD042	504392.551	6599574.224	1790.603	-60	115	140.0
		GMDD043	504815.800	6601320.000	1829.100	-67	115	80.0
		GNDD044	504380.090	6599622.578	1791.934	-65	115	185.0
		GNDD045	504366.823	6599679.058	1793.712	-57	115	311.0
		GNDD046	504364.309	6599702.621	1794.533	-60	115	191.0
		GNDD047	504459.642	6599644.133	1793.422	-60	115	101.0
		GNDD048	504792.642	6601286.638	1828.497	-74	115	95.0
		GNDD049	504807.030	6601419.483	1831.588	-60	115	90.0
		GNDD050	504826.614	6601509.677	1833.357	-60	115	80.0
		GNDD051	504766.792	6601032.571	1823.273	-60	115	120.0
		GNDD060	504801.654	6601066.131	1822.596	-60	115	200.0
		GNDD073	504367.546	6599724.992	1795.493	-57	115	150.2
		GNDD074	504366.299	6599725.496	1795.450	-73	115	152.0
		GNDD077	504821.005	6601145.026	1823.951	-60	115	222.0
		GNDD079	504636.330	6600286.824	1823.053	-60	115	181.4
		GNDD082	504769.532	6601169.127	1825.621	-60	115	266.0
		GNDD083	504646.604	6600336.172	1823.893	-60	115	181.0
		GNDD085	504456.068	6599888.509	1799.895	-60	115	90.0

Issued Capital 658.2m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary						
		GNDD088	504815.0	6601194	1825.2	-60	115	237.0
		GNDD088A	504815.621	6601193.811	1825.210	-60	115	265.0
		GNDD089	504635.811	6600285.352	1823.032	-55	133	200.1
		GNDD092	504839.792	6601208.375	1824.849	-60	115	300.0
		GNDD093	504679.396	6600332.075	1827.365	-55	115	209.0
		GNDD095	504804.597	6601219.844	1826.834	-67	115	203.0
		GNDD096	504666.622	6600602.793	1820.371	-60	115	215.0
		GNDD099	504384.933	6599759.693	1796.525	-60	115	150.0
		GNDD100	504424.250	6599784.711	1796.728	-60	115	120.0
		GNDD101	504781.691	6600986.509	1821.679	-60	115	220.0
		GNDD102	504787.340	6601285.049	1828.549	-57	115	260.0
		GNDD103	504432.004	6599482.162	1788.500	-55	115	299.0
		GNDD105	504701.392	6601025.961	1824.818	-60	115	300.0
		GNDD106	504438.745	6599613.089	1792.511	-55	115	300.0
		GNDD108	504893.480	6601156.138	1824.948	-60	115	200.0
		GNDD109	504788.659	6601026.581	1822.675	-60	115	209.0
		GNDD112	504893.408	6601198.421	1825.402	-60	115	188.0
		GNDD113	504704.700	6601067.100	1826.300	-60	115	230.0
		GNDD113A	504705.888	6601065.628	1825.877	-60	115	461
		GNDD114	504430.719	6600110.231	1807.080	-50	115	116.0
		GNDD115	504860.469	6601289.558	1826.422	-60	115	251.0
		GNDD116	504441.894	6599558.746	1790.917	-65	115	269.0
		GNDD117	504428.815	6600110.985	1807.008	-60	115	120.0
		GNDD118	505085.614	6601107.067	1811.275	-60	295	300.0
		GNDD119	504827.094	6601535.651	1835.088	-66	115	115.0
		GNDD120	504411.171	6600099.998	1806.316	-60	110	164.0
		GNDD121	504863.473	6601140.462	1821.954	-57	115	181.0
		GNDD122	504659.288	6600648.314	1819.643	-60	115	250.0
		GNDD123	504823.784	6601510.706	1833.612	-63	130	130.0
		GNDD124	504410.706	6600099.603	1806.296	-70	115	160.0

Issued Capital 658.2m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary						
		GNDD125	505135.977	6601131.034	1809.281	-60	295	300.0
		GNDD126	504716.358	6601149.031	1827.257	-60	115	196.0
		GNDD127	504889.851	6601503.430	1834.161	-55	115	300.0
		GNDD128	504715.660	6601106.719	1826.595	-60	115	230.0
		GNDD129	504637.632	6600284.287	1805.395	-55	185	291.0
		GNDD130	504838.247	6601093.352	1821.556	-60	115	227.0
		GNDD131	504650.672	6600737.758	1821.134	-60	115	280.0
		GNDD132	504819.319	6601357.930	1829.373	-55	115	300.0
		GNDD133	504869.366	6601639.665	1835.213	-60	170	182.0
		GNDD134	504639.057	6600284.444	1805.499	-55	154	290.0
		GNDD135	504845.188	6601547.554	1834.906	-64	350	135.0
		GNDD136	504837.721	6601445.719	1830.128	-55	115	310.0
		GNDD137	504647.268	6600701.174	1820.549	-60	115	370.0
		GNDD138	504883.975	6601540.420	1835.042	-65	350	237.0
		GNDD139	504755.726	6601084.848	1824.694	-60	115	200.0
		GNDD140	504991.396	6601549.750	1835.464	-60	60	230.0
		GNDD141	504779.587	6601255.947	1828.225	-70	115	270.0
		GNDD142	504433.887	6599629.407	1792.717	-62	115	360.0
		GNDD143	504902.285	6601209.174	1826.545	-20	115	120.0
		GNDD144	504961.182	6601524.651	1835.687	-70	40	410.0
		GNDD145	504557.511	6600224.447	1818.092	-64	170	200.0
		GNDD146	504772.849	6601212.611	1827.389	-70	115	350.0
		GNDD147	504959.171	6601525.259	1835.597	-60	355	240.0
		GNDD148	504845.962	6601442.396	1831.403	-24	115	85.5
		GNDD149	504847.402	6601441.816	1832.186	-5	115	88.1
		GNDD150	504848.651	6601525.476	1834.636	-65	350	251.0
		GNDD151	504673.689	6601219.059	1830.640	-60	115	430.0
		GNDD152	504901.725	6601465.446	1834.787	-15	115	165.0
		GNDD153	504690.458	6600986.257	1824.840	-70	115	326.0
		GNDD154	504891.810	6601503.838	1834.134	-65	350	212.0

Issued Capital 658.2m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary						
		GNDD155	504779.116	6601123.548	1823.862	-60	115	420.0
		GNDD156	504842.752	6601402.888	1830.505	-37	115	59.0
		GNDD157	504638.216	6600284.907	1805.408	-55	170	527.0
		GNDD158	504807.600	6601535.300	1837.000	-60	350	170.0
		GNDD159	504910.382	6601145.345	1825.562	-40	115	202.0
		GNDD160	504980.539	6601546.905	1835.243	-55	350	170.0
		GNDD161	504664.113	6600816.520	1822.385	-60	115	251.00
		GNDD162	504723.843	6601279.506	1830.376	-60	115	180.00
		GNDD163	504749.611	6601575.347	1837.394	-60	115	180.00
		GNDD164	504672.435	6601526.078	1836.853	-60	115	311.00
		GNDD165	504488.377	6599862.768	1803.486	-10	115	253.80
		GNDD166	504557.654	6600330.511	1817.438	-60	115	327.00
		GNDD167	504727.540	6600880.315	1820.767	-60	115	251.00
		GNDD168	504559.923	6600382.723	1816.844	-60	115	314.00
		GNDD169	504683.848	6601565.336	1837.928	-60	115	416.00
		GNDD170	504663.000	6600335.000	1822.900	-60	170	123.50
		GNDD170A	504664.576	6600335.390	1826.501	-60	170	380.00
		GNDD171	504674.659	6600904.137	1823.445	-70	115	350.00
		GNDD172	504487.566	6599863.343	1802.727	-45	115	119.70
		GNDD173	504697.019	6601339.596	1833.656	-60	115	191.00
		GNDD174	504474.118	6600097.716	1807.933	-11	115	329.50
		GNDD175	504653.221	6601093.209	1828.285	-60	115	353.00
		GNDD176	504733.851	6600655.255	1817.503	-60	115	350.00
		GNDD177	504759.610	6601481.663	1834.257	-60	115	160.00
		GNDD178	504625.984	6600185.259	1824.078	-60	185	145.20
		GNDD179	504406.541	6600185.242	1809.531	-55	170	192.10
		GNDD180	504678.044	6600779.784	1821.026	-60	115	341.00
		GNDD181	504669.174	6600332.942	1809.056	-60	160	401.00
		GNDD182	504669.526	6601127.040	1828.630	-60	115	332.00
		GNDD183	504775.514	6601523.887	1835.124	-65	115	146.00

Issued Capital 658.2m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary						
		GNDD184	504670.292	6601174.696	1829.453	-60	115	321.50
		GNDD185	504730.718	6601405.556	1832.739	-60	115	180.00
		GNDD186	504735.990	6600742.990	1818.290	-60	115	209.00
		GNDD187	504621.493	6601546.173	1839.975	-67	115	320.00
		GNDD188	504658.832	6601043.631	1826.939	-60	115	277.00
		GNDD189	504473.828	6600097.778	1807.415	-29	115	320.00
		GNDD190	504894.932	6601473.630	1833.192	-65	350	269.00
		GNDD191	504602.016	6601426.850	1837.553	-70	115	260.00
		GNDD192	504617.912	6600575.207	1820.347	-60	115	260.00
		GNDD193	504686.491	6601425.894	1834.934	-60	115	293.00
		GNDD194	504670.153	6600333.303	1808.999	-60	140	300.00
		GNDD195	504473.117	6600098.042	1807.172	-44	115	370.00
		GNDD196	504633.370	6600393.771	1822.260	-60	115	296.00
		GNDD197	504860.921	6601483.879	1831.591	-68	350	72.00
		GNDD198	504787.448	6601250.012	1827.763	-60	115	161.00
		GNDD199	504812.268	6601468.783	1832.487	-56	350	266.00
		GNDD200	504966.362	6601074.292	1816.847	-60	295	280.00
		GNDD201	504310.496	6599798.094	1798.387	-65	115	170.00
		GNDD202	504524.999	6600443.375	1816.607	-60	115	320.00
		GNDD203	504597.900	6600292.924	1820.443	-60	170	361.50
		GNDD204	504858.596	6601037.331	1820.096	-60	295	190.10
		GNDD205	504368.667	6599653.253	1792.808	-60	115	320.00
		GNDD206	504502.0	6600107.0	1814.0	-45	90	315.60
		GNDD207	504527.0	6600355.5	1814.9	-60	115	365.00
		GNDD208	504921.1	6601010.3	1817.6	-60	295	299.00
		GNDD209	504455.1	6599660.8	1793.6	-60	115	212.00
		GNDD210	504463.8	6600031.9	1804.7	-55	115	404.00
		GNDD211	504920.6	6601054.7	1819.1	-60	295	260.00
		GNDD212	504559.7	6600171.9	1821.2	-50	170	90.00
		GNDD213	504463.1	6599944.0	1802.1	-55	115	401.00

Issued Capital 658.2m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

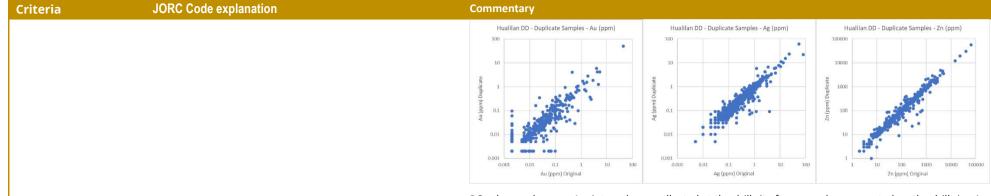
Criteria	JORC Code explanation	Commentary						
		GNDD214	504478.0	6599646.0	1794.5	-25	115	185.30
		GNDD215	504842.6	6601001.4	1821.1	-60	295	215.50
		GNDD216	504574.9	6600730.4	1823.3	-60	115	260.00
		GNDD217	504525.6	6600193.0	1816.1	-60	170	140.00
		GNDD218	504746.0	6601003.7	1821.7	-60	295	250.00
		GNDD219	504559.7	6600171.9	1821.2	-67	170	125.00
		GNDD220	504505.1	6600762.9	1826.7	-60	115	269.00
		GNDD221	504559.7	6600171.9	1821.2	-75	170	165.00
		GNDD222	504741.6	6600961.6	1822.1	-60	295	251.00
		GNDD223	504521.6	6600215.8	1814.9	-60	170	200.00
		GNDD224	504451.8	6600478.9	1818.6	-60	115	338.00
		GNDD225	504525.3	6601150.7	1833.8	-60	115	299.00
		GNDD226	504650.0	6601710.4	1847.2	-60	115	281.00
		GNDD227	504521.6	6600215.8	1814.9	-66	170	266.00
		GNDD228	504776.1	6601210.3	1827.9	-61	115	330.00
		GNDD229	504634.1	6601320.7	1835.8	-60	115	255.00
		GNDD230	504659.3	6601617.0	1843.8	-60	115	284.00
		GNDD231	504922.0	6602641.0	1819.0	-60	110	240.00
		GNDD232	504313.3	6599837.1	1802.0	-65	115	179.30
		GNDD233	504672.4	6601526.1	1836.9	-50	115	236.00
		GNDD234	504823.1	6601276.7	1828.9	-60	115	116.00
		GNDD235	504378.9	6599939.1	1803.5	-65	115	140.00
		GNDD236	504598.6	6601381.4	1838.8	-60	115	260.00
		GNDD237	504630.4	6601587.2	1841.8	-60	115	450.00
		GNDD238	504913.0	6602615.0	1810.0	-60	110	250.00
		GNDD239	504478.0	6599646.0	1794.5	-50	115	91.00
		GNDD240	504478.7	6600228.5	1813.4	-55	170	200.00
		GNDD241	504491.0	6599568.0	1794.2	-45	115	146.50
		GNDD242	504580.0	6601301.8	1837.8	-60	115	340.20
		GNDD243	504445.0	6600219.0	1811.7	-60	170	161.00

Issued Capital 658.2m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary						
		GNDD244	504842.0	6602585.0	1810.0	-60	110	281.00
		GNDD245	504683.8	6601565.3	1837.9	-50	115	306.00
		GNDD246	504308.8	6599839.4	1802.3	-72	115	212.00
		GNDD247	504467.0	6599500.0	1797.0	-35	115	180.00
		GNDD248	504667.4	6601481.7	1838.8	-60	115	320.00
		GNDD249	504566.9	6601219.1	1833.3	-60	115	280.00
		GNDD250	504333.6	6599872.1	1802.5	-60	115	197.00
		GNDD251	504476.0	6599539.0	1795.2	-45	115	170.50
		GNDD252	504835.6	6600917.8	1817.0	-60	295	308.00
		GNDD253	504463.9	6599612.6	1792.3	-60	115	277.90
		GNDD254	504621.5	6601546.2	1840.0	-60	115	413.00
		GNDD255	504617.7	6601151.8	1831.3	-60	115	229.00
		GNDD256	504440.0	6599480.0	1788.5	-40	115	200.00
		GNDD257	504850.1	6600955.2	1818.3	-60	295	290.00
		GNDD258	504478.7	6600228.5	1813.4	-64	170	270.00
		GNDD259	504893.5	6601156.1	1824.9	-78	295	209.00
		GNDD260	504686.4	6601781.0	1848.0	-60	115	281.00
		GNDD261	504728.0	6600177.0	1845.3	-45	120	140.00
		GNDD262	504911.8	6600970.5	1816.0	-60	295	290.00
		GNDD263	504874.0	6601164.7	1825.8	-60	295	152.00
		GNDD264	504401.3	6600207.1	1811.6	-60	170	229.80
		GNDD265	504505.7	6600306.1	1822.0	-55	170	345.00
		GNDD266	504728.0	6600177.0	1845.3	-40	170	90.00
		GNDD267	504892.7	6601112.0	1820.3	-65	295	221.00
		GNDD268	504448.5	6600392.2	1816.3	-60	115	360.00
		GNDD269	504695.6	6600168.0	1837.4	-45	170	112.60
		GNDD270	504893.8	6601199.6	1825.4	-80	295	155.30
		GNDD271	504558.0	6600314.0	1816.2	-60	130	281.00
		GNDD272	504444.0	6600217.0	1812.4	-52	170	191.00
		GNDD273	504559.7	6600171.9	1821.2	-20	170	80.00

Issued Capital 658.2m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman


Criteria	JORC Code explanation	Commentary						
		GNDD274	504558.0	6600314.0	1816.2	-55	175	340.00
		GNDD275	504893.8	6601199.6	1825.4	-55	295	131.00
		GNDD276	504467.6	6600295.0	1814.5	-60	115	340.00
		GNDD277	504852.5	6601086.6	1820.6	-60	295	155.00
		GNRC052	504443.927	6599554.145	1790.676	-60	115	90
		GNRC053	504452.888	6599589.416	1791.660	-60	115	96
		GNRC054	504458.908	6599679.484	1794.408	-60	115	90
		GNRC055	504461.566	6599726.253	1795.888	-60	115	102
		GNRC056	504463.187	6599763.817	1796.276	-60	115	102
		GNRC057	504453.440	6599901.106	1800.270	-60	115	96
		GNRC058	504716.992	6600488.640	1825.624	-60	115	102
		GNRC059	504785.101	6600721.845	1817.042	-60	115	84
		GNRC061	504963.888	6601521.567	1835.635	-60	115	30
		GNRC062	504943.260	6601531.855	1834.917	-60	115	30
		GNRC063	504914.884	6601499.583	1833.781	-60	115	36
		GNRC064	504895.067	6601472.101	1833.039	-60	115	36
		GNRC065	504865.673	6601481.570	1831.536	-60	115	60
		GNRC066	504896.480	6601506.894	1834.226	-60	115	48
		GNRC067	504911.268	6601541.124	1836.127	-60	115	50
		GNRC068	504990.546	6601552.694	1835.287	-60	030	114
		GNRC069	504934.855	6601579.782	1836.179	-60	115	120
		GNRC070	504925.545	6601566.505	1835.127	-60	350	84
		GNRC071	504878.397	6601572.030	1833.873	-60	350	54
		GNRC072	504877.872	6601568.814	1833.843	-70	350	72
		GNRC075	504842.742	6601573.984	1835.428	-60	350	60
		GNRC076	504828.279	6601539.638	1835.244	-60	115	76
		GNRC078	504842.744	6601450.106	1830.180	-60	115	70
		GNRC080	504864.734	6601560.758	1834.333	-60	115	86
		GNRC081	504815.835	6601460.850	1832.033	-73	115	86
		GNRC084	504965.730	6601530.280	1836.056	-55	030	145

Issued Capital 658.2m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary							
		GNRC086	504838.724	6601402.481	1829.645	-60	115	60	
		GNRC087	504858.585	6601345.400	1828.417	-60	115	30	
		GNRC090	504821.284	6601359.986	1829.379	-60	115	60	
		GNRC091	504789.111	6601376.410	1830.448	-60	115	80	
		GNRC094	504852.454	6601307.187	1827.304	-60	115	60	
		GNRC097	504831.396	6601289.723	1827.153	-60	115	70	
		GNRC098	504784.865	6601253.409	1827.869	-76	115	96	
		GNRC104	504780.186	6601228.313	1827.663	-64	115	150	
		GNRC107	504623.1	6600197.1	1823.3	-60	185	120	
		GNRC110	504502.0	6600107.0	1814.0	-62	90	60	
		GNRC111	504427.8	6599739.8	1796.4	-60	115	120	
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. 	Drill core is placed into wooden boxes by the drillers and depth marks are indicated on wooden blocks at the end of each run. These depths are reconciled by CEL geologists when measuring core recovery.							
	 Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	Triple tube drilling has been being done by CEL to maximise core recovery.							
		RC sub-samples are collected from a rotary splitter mounted to the face sample recovery cyclone. A 2-kg sub-samples is collected for each metre of RC drilling. Duplicate samples are taken at the rate of I every 25-30 samples using a riffle splitter to split out a 2-4 kg sub-sample. The whole sample recovered weighed to measure sample recovery and consistency in sampling.							
		whereby low rec available to mor fracturing in the	onship has been obse overies have resulte e accurately quantify rock. A positive corr erally post mineral an	d in underreporting this. Core recover elation between re	of grade. Insury y is influenced covery and RQ	fficient in by the in D has bee	Iformation is nature of nature of the second in the second	ot yet ral	
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation mining studies 	t core photographs from the historic drilling have been found. No drill core has survived due to poor							
	 and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean channel etc) photography. The total length and percentage of the relevant intersections logged. 	structure to a lev work. RC drill ch quantitative. Ge	all the core is logged vel that is suitable fo ips are logged for ge ological logging is do nolds all drilling loggi	r geological modelli ology, alteration ar one in MS Excel in a	ng resource es nd mineralisation format that ca	timation on. Wher	and metallurgi e possible logg	ical test ging is	

JORC Code explanation Criteria Commentary Sub-sampling - If core whether cut or sawn and whether quarter half or Competent drill core is cut longitudinally using a diamond saw for sampling of \(\frac{1}{2} \) the core. Soft core is all core taken. split using a wide blade chisel or a manual core split press. The geologist logging the core indicates on techniques and the drill core where the saw cut is to be made to ensure half-core sample representivity. If non-core whether riffled tube sampled rotary split etc sample preparation and whether sampled wet or drv. Sample intervals are selected based on lithology alteration and mineralization boundaries. Sample For all sample types the nature quality and lengths average 1.38m. No second-half core samples have been submitted. The second half of the core appropriateness of the sample preparation technique. samples has been retained in the core trays for future reference. Quality control procedures adopted for all sub-sampling From hole GNDD073, duplicate diamond core samples have been collected for every 25-30m drilled. The stages to maximise representivity of samples. duplicate diamond core samples are ¼ core samples. Duplicate core sample results and correlation plots - Measures taken to ensure that the sampling is (log scale for Au, Ag and Zn) are shown below: representative of the in-situ material collected including for instance results for field duplicate/second-half RSQ median variance n mean sampling. duplicate original duplicate original original duplicate Whether sample sizes are appropriate to the grain size of 557 0.980 0.189 0.192 0.008 0.007 3.667 4.752 Au (ppm) the material being sampled. 0.84 0.70 9.83 557 0.675 0.21 0.19 19.34 Ag (ppm) 557 0.988 3.13 2.77 0.19 0.17 480.50 369.93 Cd (ppm) 557 0.284 20.42 14.53 3.30 3.00 1.9E+04 5.9E+03 Cu (ppm) 557 0.979 1.391 1.365 1.460 1.440 2.6 2.4 Fe (%) 557 0.989 119.3 119.2 14.8 13.9 8.7E+05 1.2E+06 Pb (ppm) 557 0.987 0.341 0.333 0.090 0.080 1.029 0.930 S (%) 557 0.992 537 477 83 79 1.2.E+07 8.6.E+06 Zn (ppm) n=count RSQ = R squared The correlation for Cu is poor because of 1 pair, where Cu results vary significantly. Removing this outlier

provides at RSQ for Cu of 0.962

RC sub-samples over 1m intervals are collected at the drill site from a cyclone mounted on the drill rig. A duplicate RC sample is collected for every 25-30m drilled.

The duplicate RC sample results and correlation plots (log scale for Au, Ag and Zn) are shown below:

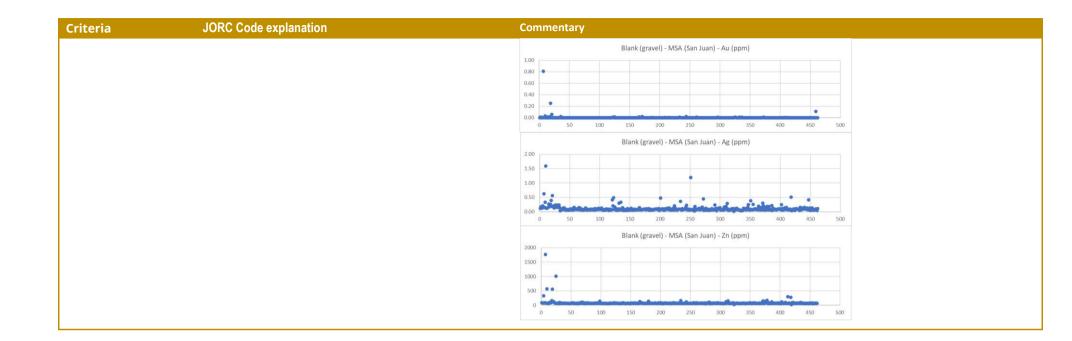
	n	RSQ	mean		median		variance	
			original	duplicate	original	duplicate	original	duplicate
Au (ppm)	85	0.799	0.101	0.140	0.017	0.016	0.041	0.115
Ag (ppm)	85	0.691	1.74	2.43	0.59	0.58	13.59	64.29
Cd (ppm)	85	0.989	15.51	16.34	0.41	0.44	4189	4737
Cu (ppm)	85	0.975	47.74	53.86	5.80	5.70	2.4E+04	3.1E+04
Fe (%)	85	0.997	1.470	1.503	0.450	0.410	7.6	7.6
Pb (ppm)	85	0.887	296.0	350.6	26.3	32.4	6.0E+05	7.4E+05
S (%)	85	0.972	0.113	0.126	0.020	0.020	0.046	0.062
Zn (ppm)	85	0.977	3399	3234	158	177	2.5.E+08	2.1.E+08
n=count								
RSQ = R squa	ared							

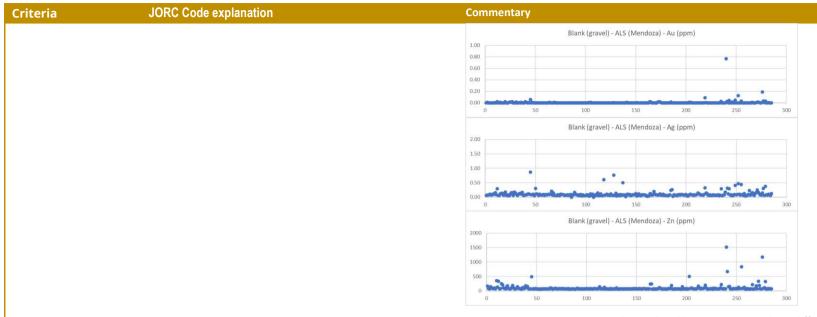
CEL samples have been submitted to the MSA laboratory in San Juan and the ALS laboratory in Mendoza for sample preparation. The sample preparation technique is considered appropriate for the style of mineralization present in the Project.

Sample sizes are appropriate for the mineralisation style and grain size of the deposit.

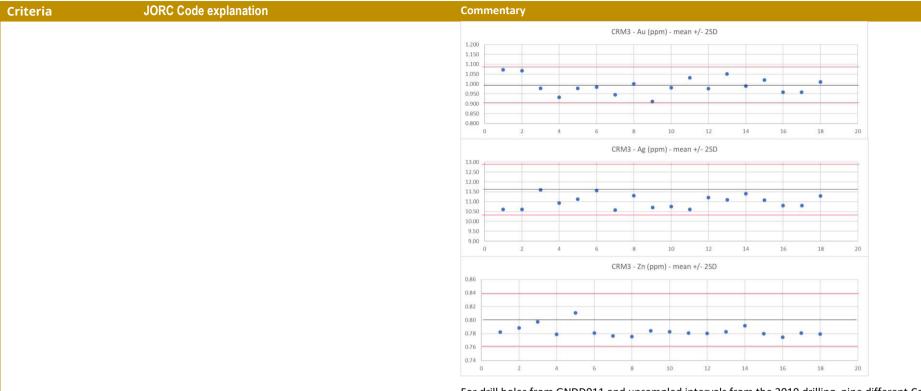
18 duplicate channel samples have been collected. The data is not yet statistically significant to allow a discussion of the significance of the results.

Quality of assay data and laboratory tests

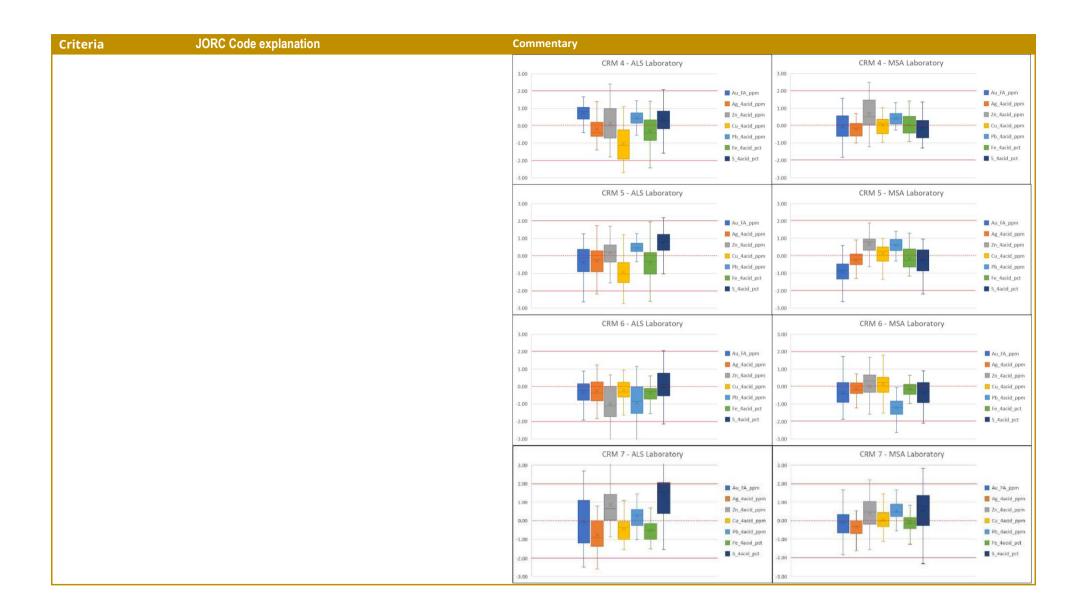

- The nature quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.
- For geophysical tools spectrometers handheld XRF instruments etc the parameters used in determining the analysis including instrument make and model reading times calibrations factors applied and their derivation etc.
- Nature of quality control procedures adopted (eg standards blanks duplicates external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.

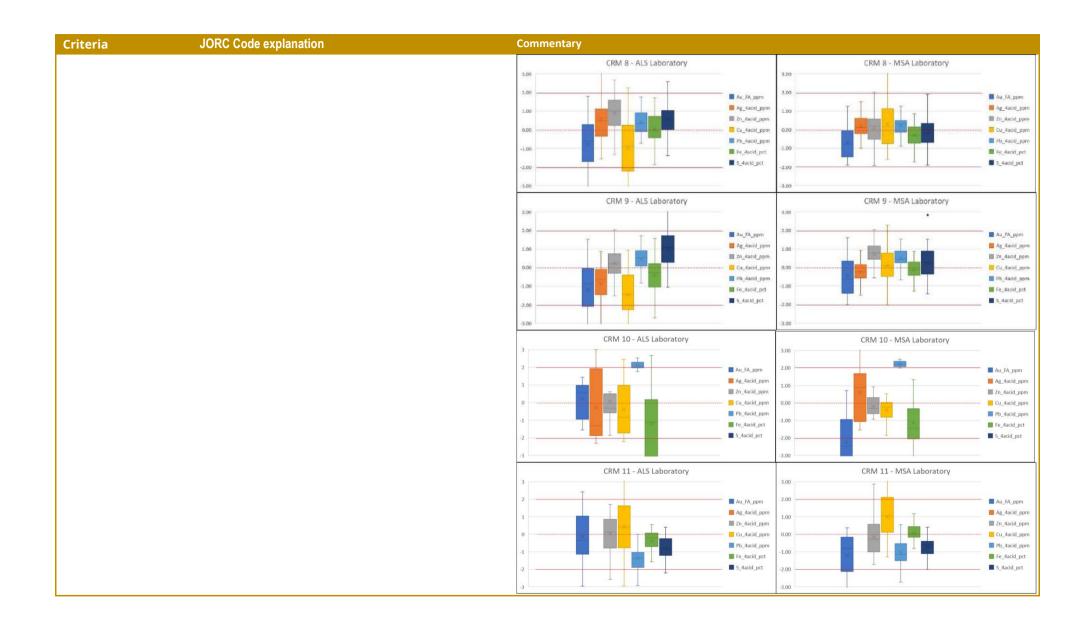

The MSA laboratory used for sample preparation in San Juan has been inspected by Stuart Munroe (Exploration Manager) and Sergio Rotondo (COO) prior to any samples being submitted. The laboratory procedures are consistent with international best practice and are suitable for samples from the Project. The ALS laboratory in Mendoza has not yet been inspected by CEL representatives.

Internal laboratory standards were used for each job to ensure correct calibration of elements.

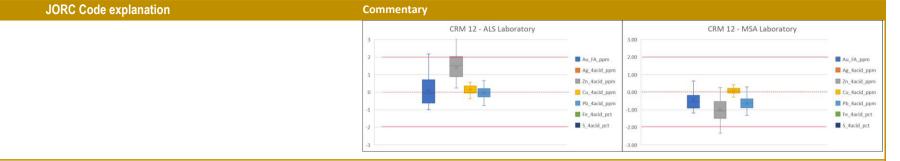

CEL submit blank samples (cobble and gravel material from a quarry nearby to Las Flores San Yuan) to both the MSA laboratory and the ALS laboratory which were strategically placed in the sample sequence immediately after samples that were suspected of containing high grade Au Ag Zn or Cu to test the lab preparation contamination procedures. The values received from the blank samples suggest rare cross contamination of samples during sample preparation.

13 blank samples have been submitted with the channel samples where final results been received. The blank sample results are consistent with the blank results submitted with the drill core samples and no unexpected results have been returned.





For GNDD001 – GNDD010 samples analysed by MSA in 2019, three different Certified Standard Reference pulp samples (CRM) with known values for Au Ag Pb Cu and Zn have been submitted with samples of drill core to test the precision and accuracy of the analytic procedures and determination of the MSA laboratory in Canada Two of the standards were only used 4 times each and the third . 26 reference analyses were analysed in the samples submitted in 2019. For CRM 1 one sample returned an Au value > 2 standard deviations (SD) above the certified value. For CRM 2 one sample returned an Au value < 2SD below the certified value. For CRM 3 (graphs below) one sample returned a Cu value > 2SD above the certified value. All other analyses are within 2SD of the expected value. The standards demonstrate suitable precision and accuracy of the analytic process. No systematic bias is observed.



For drill holes from GNDD011 and unsampled intervals from the 2019 drilling, nine different Certified Standard Reference pulp samples (CRM) with known values for Au Ag Fe S Pb Cu and Zn have been submitted with samples of drill core to test the precision and accuracy of the analytic procedures of both the MSA and ALS. In the results received to date there has been no observed bias in results of the CRM. The standards demonstrate suitable precision and accuracy of the analytic process. No systematic bias is observed. A summary of the standard deviations from the expected values for CRM's used is summarised below. Generally, an average of standard deviations close to zero indicates a high degree of accuracy and a low range of standard deviations with a low fail count indicates a high degree of precision. Only 12 standard (CRM) samples have been submitted with the channel samples. The results are consistent with CRM submitted with drill core samples.

Issued Capital 658.2m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Verification of sampling and assaying

Criteria

- The verification of significant intersections by either independent or alternative company personnel.
- The use of twinned holes.
- Documentation of primary data data entry procedures data verification data storage (physical and electronic) protocols.
- Discuss any adjustment to assay data.

Repeat sampling of 186 coarse reject samples from 2019 drilling has been done to verify sampling. Original samples were from the 2019 DD drilling which were analysed by MSA (San Juan preparation and Vancouver analysis). Repeat samples were analysed by ALS (Mendoza preparation and Vancouver analysis). The repeat analysis technique was identical to the original. The repeat analyses correlate very closely with the original analyses providing a high confidence in the sample preparation and analysis from MSA and ALS. A summary of the results for the 186 sample pairs for key elements is provided below:

	Mean		Median		Std Devia	ation	
Element	MSA	ALS	MSA	ALS	MSA	ALS	Correlation coefficient
Au (FA and GFA ppm)	4.24	4.27	0.50	0.49	11.15	11.00	0.9972
Ag (ICP and ICF ppm)	30.1	31.1	5.8	6.2	72.4	73.9	0.9903
Zn ppm (ICP ppm and ICF %)	12312	12636	2574	2715	32648	33744	0.9997
Cu ppm (ICP ppm and ICF %)	464	474	74	80	1028	1050	0.9994
Pb ppm (ICP ppm and ICF %)	1944	1983	403	427	6626	6704	0.9997
S (ICP and ICF %)	2.05	1.95	0.05	0.06	5.53	5.10	0.9987
Cd (ICP ppm)	68.5	68.8	12.4	12.8	162.4	159.3	0.9988
As (ICP ppm))	76.0	79.5	45.8	47.6	88.1	90.6	0.9983
Fe (ICP %)	4.96	4.91	2.12	2.19	6.87	6.72	0.9994
REE (ICP ppm)	55.1	56.2	28.7	31.6	98.2	97.6	0.9954

Cd values >1000 are set at 1000.

REE is the sum off Ce, La, Sc, Y. CE > 500 is set at 500. Below detection is set at zero

CEL have sought to twin some of the historic drill holes to check the results of previous exploration. A full

Criteria	JORC Code explanation	Commentary
		analysis of the twin holes has yet to be completed. The holes are: GNDD003 – DDH34 and 04HD08 GNRC110 – DDH53 GNDD144 – 05HD39 GNRC107 – GNDD008/008A GNDD206 – DDH54
		Final sample assay analyses are received by digital file in PDF and CSV format. The original files are backed-up and the data copied into a drill hole database for geological modelling.
		Assay results summarised in the context of this report have been rounded appropriately to 2 significant figures. No assay data have been otherwise adjusted.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys) trenches mine workings and other locations used in Mineral Resource estimation. 	Following completion of drilling collars are surveyed using a differential GPS (DGPS) relative into the Argentinian SGM survey. The locations have been surveyed in POSGAR 2007 zone 2 and converted to WGS84 UTM zone 19s.
	Specification of the grid system used.Quality and adequacy of topographic control.	Following completion of the channel sampling, the location of the channel samples taken underground is surveyed from a survey mark at the entrance to the underground which is located using differential GPS.
		The drill machine is set-up on the drill pad using hand-held equipment according to the proposed hole design.
		Diamond core drill holes are surveyed at 30-40m intervals down hole using a Reflex tool. RC drill holes are surveyed down hole every 10 metres using a gyroscope to avoid magnetic influence from the drill rods.
		All current and previous drill collar sites Minas corner pegs and strategic surface points have been surveyed using DGPS to provide topographic control for the Project.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	No regular drill hole spacing has been applied across the Project, although a nominal 40m x 40m drill spacing is being applied to infill and extension drilling where appropriate. The current drilling is designed to check previous exploration, extend mineralisation along strike, and provide some information to establish controls on mineralization and exploration potential. No Mineral Resource Estimate to JORC 2012 reporting standards has been made at this time. Samples have not been composited.

Criteria	JORC Code explanation	Commentary
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias this should be assessed and reported if material. 	As far as is currently understood the orientation of sampling achieves unbiased sampling of structures and geology controlling the mineralisation. Drilling has been designed to provide an unbiased sample of the geology and mineralisation targeted.
Sample security	- The measures taken to ensure sample security.	Samples were under constant supervision by site security, senior personnel and courier contractors prior to delivery to the preparation laboratory in San Juan or Mendoza.
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	There has not yet been any independent reviews of the sampling techniques and data.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria

JORC Code explanation

Mineral tenement and land tenure status

- Type reference name/number location and ownership including agreements or material issues with third parties such as joint ventures partnerships overriding royalties native title interests historical sites wilderness or national park and environmental settings.
- The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.

Commentary

The current Hualilan project comprises 15 Minas (equivalent of mining leases) and 2 Demasias (mining lease extensions). This covers approximately 4 km of strike and includes all of the currently defined mineralization. There are no royalties on the project. CEL is earning a 75% interest in the Project by funding exploration to a Definitive Feasibility Study (DFS).

Granted mining leases (Minas Otorgadas) at the Hualilan Project

Name	Number	Current Owner	Status	Grant Date	Area (ha)
Cerro Sur					
Divisadero	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6
Flor de Hualilan	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6
Pereyra y Aciar	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6
Bicolor	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6
Sentazon	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6
Muchilera	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6
Magnata	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6
Pizarro	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6
Cerro Norte					
La Toro	5448-M-1960	CIA GPL S.R.L.	Granted	30/04/2015	6
La Puntilla	5448-M-1960	CIA GPL S.R.L.	Granted	30/04/2015	6

Criteria	JORC Code explanation	Commentary					
		Pique de Ortega	5448-M-1960	CIA GPL S.R.L.	Granted	30/04/2015	6
		Descrubidora	5448-M-1960	CIA GPL S.R.L.	Granted	30/04/2015	6
		Pardo	5448-M-1960	CIA GPL S.R.L.	Granted	30/04/2015	6
		Sanchez	5448-M-1960	CIA GPL S.R.L.	Granted	30/04/2015	6
		Andacollo	5448-M-1960	CIA GPL S.R.L.	Granted	30/04/2015	6

Mining Lease extensions (Demasias) at the Hualilan Project

Name	Number	Current Owner	Status	Grant date	Area (ha)
Cerro Sur					
North of "Pizarro" Mine	195-152-C-1981	Golden Mining S.R.L.	Granted	05/12/2014	1.9
Cerro Norte					
South of "La Toro" Mine	195-152-C-1981	CIA GPL S.R.L.	Granted	05/12/2014	1.9

Additional to the Minas and Demasias an application for an Exploration Licence covering 26 km2 surrounding the 15 Minas has been accepted by the San Juan Department of Mines and is currently being processed.

Exploration licence application surrounding the Minas and Demasias at the Hualilan Project

Name	Number	Status	Grant Date	Expiry Date	Area (ha)
Josefina	30.591.654	Pending	-	5 year application	2570

There are no know impediments to obtaining the exploration license or operating the Project.

Exploration done by other parties

Acknowledgment and appraisal of exploration by other parties.

Intermittent sampling dating back over 500 years has produced a great deal of information and data including sampling geologic maps reports trenching data underground workings drill hole results geophysical surveys resource estimates plus property examinations and detailed studies by several geologists. Prior to the current exploration no work has been completed since 2006.

There is 6 km of underground workings that pass through mineralised zones. Records of the underground

Criteria	JORC Code explanation	Commentary
		geology and sampling are currently being compiled and digitised as are sample data geological mapping trench data adit exposures and drill hole results. Geophysical surveys exist but have largely yet to be check located and digitised.
		Drilling on the Hualilan Project (Cerro Sur and Cerro Norte combined) extends to over 150 drill holes. The key historical exploration drilling and sampling results are listed below.
Geology	- Deposit type geological setting and style of	 1984 – Lixivia SA channel sampling & 16 RC holes (AG1-AG16) totaling 2040m 1995 - Plata Mining Limited (TSE: PMT) 33 RC holes (Hua- 1 to 33) + 1500 samples 1998 – Chilean consulting firm EPROM (on behalf of Plata Mining) systematic underground mapping and channel sampling 1999 – Compania Mineral El Colorado SA ("CMEC") 59 core holes (DDH-20 to 79) plus 1700m RC program 2003 – 2005 – La Mancha (TSE Listed) undertook 7447m of DDH core drilling (HD-01 to HD-48) Detailed resource estimation studies were undertaken by EPROM Ltda. (EPROM) in 1996 and CMEC (1999 revised 2000) both of which were written to professional standards and La Mancha 2003 and 2006. The collection of all exploration data by the various operators was of a high standard and had appropriate sampling techniques intervals and custody procedures were used. Mineralisation occurs in all rock types where it preferentially replaces limestone, shale and sandstone and occurs
	mineralisation.	in fault zones and in fracture networks within dacitic intrusions. The mineralisation has previously been classified as a Zn-Cu distal skarn (or manto-style skarn) with vein-hosted Au-Ag mineralisation. It has been divided into three phases – prograde skarn retrograde skarn and a late quartz–galena event the evolution of the hydrothermal system and mineral paragenesis is the subject of more detailed geometallurgical work.
		Gold occurs in native form and as inclusions with sulphide and pyroxene. The mineralisation also commonly contains pyrite, chalcopyrite sphalerite and galena with rare arsenopyrite, pyrrhotite and magnetite.
		Mineralisation is either parallel to bedding in bedding-parallel faults, in veins or breccia matric within fractured dacitic intrusions, at lithology contacts or in east-west striking steeply dipping siliceous faults that cross the bedding at a high angle. The faults have thicknesses of 1–4 m and contain abundant sulphides. The intersection between the bedding-parallel mineralisation and east-striking cross veins seems to be important in localising the mineralisation.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all 	The following significant intersections have been reported by previous explorers. A cut-off grade of 1 g/t Au equivalent has been used with up to 2m of internal diltion or a cut-off grade of 0.2 g/t Au equivalent and up to 4m of internal diltion has been allowed. No metallurcial or recovery factors have been used. Drill collar location

Issued Capital 658.2m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

JORC Code explanation Criteria Commentary Material drill holes: is provided in the previous section. easting and northing of the drill hole collar Hole id Interval (m) Au (g/t) Ag (g/t) Zn (%) From (m) elevation or RL (Reduced Level – elevation above sea 38.6 AG16 1.2 0.1 28.6 1.7 level in metres) of the drill hole collar MG10 108.0 3.0 1.3 No assay No assay dip and azimuth of the hole DDH36 24.7 9.3 1.6 46.3 1.2 down hole length and interception depth 1.0 0.00 DDH53 17.3 1.4 1.7 hole length. DDH53 24.0 8.9 3.7 239.5 0.03 If the exclusion of this information is justified on the DDH53 35.7 3.9 3.9 87.8 0.06 basis that the information is not Material and this DDH53 41.0 3.0 2.6 7.6 0.20 exclusion does not detract from the understanding of DDH54 20.0 1.2 0.7 0.00 1.1 the report the Competent Person should clearly DDH54 31.1 8.3 3.9 32.1 0.80 explain why this is the case. DDH65 62.0 8.2 11.0 60.6 1.2 DDH65 82.0 1.0 1.8 33.4 0.30 DDH66 83.1 7.2 23.7 42.9 2.4 DDH66 87.9 2.4 69.9 114.4 2.2 DDH66 104.9 2.8 1.8 29.0 0.10 DDH67 98.7 1.3 0.2 7.8 1.3 DDH68 4.0 17.9 2.2 6.3 0.20 DDH68 73.7 0.5 0.8 9.0 1.2 DDH69 4.0 16.1 2.3 1.6 0.10 DDH69 7.0 28.0 76.9 0.3 0.1 DDH69 79.7 0.8 1.3 120.0 4.5 DDH70 84.0 7.0 5.2 13.5 0.70 DDH71 11.0 2.0 0.5 218.0 0.06 DDH71 39.9 1.3 6.0 0.03 1.0 DDH71 45.5 1.1 0.4 22.8 0.60 DDH71 104.0 10.0 33.5 126.7 7.9 1.3 DDH72 26.0 11.7 3.8 14.1 DDH72 0.04 52.7 6.3 1.5 30.4 DDH73 62.5 3.5 0.5 0.60 15.6 DDH74 119.9 0.5 7.3 98.5 2.6 DDH76 61.3 0.7 4.0 0.50 11.1 DDH76 74.4 4.0 0.8 8.8 0.30 DDH76 84.8 1.2 1.4 10.9 2.0 DDH78 0.7 1.9 109.1 1.1 13.4 03HD01A 90.1 1.7 2.1 37.4 2.4

Challenger Exploration Limited ACN 123 591 382 ASX: CEL **Issued Capital** 658.2m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

03HD03

Contact T: +61 8 6380 9235 E: admin@challengerex.com

2.4

2.5

25.6

2.3

55.0

Criteria	JORC Code explanation	Commentary						
		04HD05	80.3	2.0	0.9	42.7	0.02	
		04HD05	97.5	1.8	1.9	35.0	0.04	
		04HD05	102.0	1.0	1.3	42.1	0.01	
		04HD05	106.0	1.0	0.7	28.0	0.05	
		04HD05	108.0	5.6	2.8	19.9	1.2	
		04HD06	65.4	1.2	46.6	846.0	0.50	
		04HD06	75.0	1.0	1.0	2.9	0.01	
		04HD06	104.5	7.6	1.8	5.0	1.2	
		04HD06	115.1	0.9	16.4	23.1	7.7	
		04HD07	98.3	2.2	1.4	32.5	0.90	
		04HD10	44.3	0.2	3.9	81.5	5.6	
		04HD10	55.5	0.5	1.3	11.5	0.46	
		04HD10	78.6	1.7	4.8	93.7	2.4	
		04HD11	28.0	1.0	0.1	9.3	1.4	
		04HD12	49.3	0.7	1.5	16.1	0.10	
		04HD13	61.5	1.0	0.8	7.9	0.20	
		04HD15	103.7	0.3	1.7	32.9	0.80	
		04HD16C	107.5	6.8	8.6	117.1	9.1	
		04HD16C	111.8	2.5	7.6	75.6	11.5	
		04HD16C	144.9	1.9	9.1	31.2	5.5	
		04HD16C	171.1	0.4	0.5	9.4	1.7	
		04HD17	134.9	0.7	2.5	14.3	4.1	
		04HD17	139.1	0.5	10.5	9.4	0.20	
		04HD17	199.6	0.2	0.8	3.5	5.9	
		04HD17	202.1	1.9	4.5	1.5	0.70	
		04HD20	43.2	1.8	0.9	83.9	0.20	
		04HD21	70.1	0.2	4.8	60.6	6.4	
		04HD21	141.1	0.6	12.9	105.0	4.8	
		04HD24	72.0	2.0	2.5	3.2	0.04	
		04HD24	83.0	2.0	3.1	25.3	0.04	
		04HD24	94.0	4.2	0.7	21.2	0.10	
		04HD25	92.0	1.7	2.4	51.5	6.3	
		04HD26	21.7	2.3	1.5	32.5	3.0	
		04HD28	42.8	0.4	1.9	4.5	0.10	
		04HD29	37.0	1.0	0.1	112.0	0.01	
		05HD42	90.5	1.0	1.9	6.1	0.03	
I		05HD42	115.0	3.0	29.0	103.1	0.20	

Issued Capital 658.2m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

eria	JORC Code explanation	Commentary					
		05HD43	69.0	1.0	1.8	2.3	0.01
		05HD43	81.0	3.0	2.8	51.5	0.50
		05HD43	90.7	2.3	1.4	29.6	0.30
		05HD44	87.5	1.1	3.8	3.4	0.01
		05HD44	91.2	1.4	0.0	3.6	2.8
		· · · · · · · · · · · · · · · · · · ·					

From GNDD001 the following significant assay results have been received reported to a cut-off of 1.0 g/t AuEq (gold equivalent) unless otherwise indicated. Drill collar location is provided in the previous section.

Drilling in 2019:

Hole_id	Interval (m)	From	Au (g/t)	Ag (g/t)	Zn (%)	AuEq (g/t)	
GNDD001	10.00	27.00	0.94	4.9	0.33	1.1	(2)
inc	3.00	32.00	2.3	5.8	0.50	2.6	
GNDD002A	5.00	31.00	0.74	2.7	0.67	1.1	
and	3.00	81.50	3.1	8.6	5.8	5.7	
GNDD003	6.10	55.00	34.6	22	2.9	36.2	(1)
GNDD004	20.50	5.50	1.1	5.3	0.45	1.4	(2)
inc	8.47	6.03	2.0	7.8	0.68	2.4	
and	3.43	18.67	1.2	3.2	0.26	1.3	
GNDD005	19.00	29.00	1.3	8.1	0.62	1.6	(2)
inc	2.00	29.00	0.79	18	3.3	2.5	
and	4.00	43.00	5.1	22	0.49	5.6	
and	7.00	59.00	7.8	72	1.4	9.3	
inc	3.00	61.00	16.5	135	1.6	18.9	(1)
and	10.00	75.00	0.75	38	0.27	1.4	(2)
inc	3.00	77.00	1.7	39	0.43	2.3	
inc	1.00	83.00	1.2	156	0.72	3.5	
GNDD006	6.50	78.50	4.2	21	0.29	4.6	
inc	3.80	78.50	6.8	34	0.41	7.4	
and	1.45	90.00	2.1	41	0.92	3.1	
GNDD007	45.92	13.00	0.43	7.8	0.12	0.58	(2)
inc	3.00	45.00	1.9	5.2	0.26	2.0	
inc	3.00	55.00	2.3	35	0.54	2.9	
GNDD007A	27.00	25.00	0.43	7.2	0.09	0.56	(2)
inc	1.80	46.00	2.4	3.1	0.12	2.5	
and	0.70	60.30	0.8	25	0.21	1.2	
and	6.70	149.00	14.3	140	7.3	19.3	
inc	3.06	150.60	27.5	260	12.9	36.5	(1)

Challenger Exploration Limited ACN 123 591 382 ASX: CEL Issued Capital 658.2m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 Directors
Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary							
		and	0.60	176.40	1.9	6.7	0.99	2.4	<u> </u>
		GNDD008	35.50	16.50	0.33	8.1	0.10	0.47	(2)
		inc	1.00	36.00	1.7	6.2	0.08	1.9	
		inc	1.63	43.37	1.7	8.4	0.14	1.9	
		inc	1.15	47.85	1.2	16	0.56	1.7	
		and	5.70	91.00	12.3	182	0.67	15.0	(1)
		and	1.00	99.70	0.93	43	0.52	1.7	
		and	2.40	107.00	6.3	222	1.9	10.0	
		GNDD008A	35.50	17.50	0.24	13	0.08	0.43	(2)
		and	20.00	95.00	3.3	45	0.55	4.1	(2)
		inc	2.64	96.60	22.8	218	0.68	25.9	(1)
		inc	10.00	105.00	0.6	28.2	0.71	1.2	
		GNDD009	7.00	72.00	2.3	102	0.08	3.6	
		and	3.00	100.00	0.85	50	0.02	1.5	
		and	10.32	109.10	10.4	28	4.6	12.7	
		inc	4.22	115.20	21.9	58	8.7	26.4	(1)
		GNDD010	32.00	27.00	0.29	8.6	0.13	0.46	(2)
		inc	5.00	30.00	0.65	21	0.09	0.95	•
		and	1.30	55.00	1.1	30	0.80	1.8	
		and	7.22	136.00	7.5	60	1.1	8.8	(2)
		inc	3.00	139.00	17.7	143	2.5	20.6	• •

- (1) cut-off of 10 g/t AuEq
- (2) cut-off of 0.2 g/t AuEq

Drilling in 2020-21:

2									
Hole_id	from (m)	interval (m)	Au (g/t)	Ag (g/t)	Zn (%)	AuEq (g/t)	Cu (%)	Pb (%)	Note
GNDD011	81.00	1.00	1.9	43	0.13	2.5	0.01	0.06	
and	139.80	4.80	1.4	5.7	2.6	2.6	0.02	0.02	
and	147.20	0.70	9.4	13	6.6	12.4	0.07	0.00	1
and	151.40	0.50	1.2	5.5	0.25	1.4	0.00	0.00	
GNDD012	40.70	1.00	6.3	290	0.12	10.1	0.18	1.2	
GNDD013	116.40	6.93	1.3	12	2.7	2.6	0.05	0.18	
inc	122.50	0.83	4.0	61	10.1	9.1	0.21	1.2	
GNDD014	118.50	7.55	2.4	15	3.6	4.2	0.05	0.16	
GNDD015	54.00	1.00	0.69	8.6	0.39	1.0	0.03	0.24	

Criteria	JORC Code explanation	Commentary									
		and	156.00	1.90	1.0	31	2.8	2.6	0.02	0.79	
		GNDD016	64.00	1.00	0.80	27	0	1.1	0.02	0.06	
		and	109.50	5.00	1.8	27	8.3	5.8	0.16	0.01	
		and	116.55	4.45	6.0	83	3.9	8.8	0.13	0.02	
		GNDD017	34.30	1.7	0.31	24	2.0	1.5	0.06	1.0	
		GNDD018	37.75	0.85	1.1	3.6	0.1	1.2	0.01	0.05	
		and	63.20	3.75	7.1	78	3.6	9.6	0.28	3.6	
		inc	64.40	2.55	10.3	114	4.9	13.9	0.41	5.2	1
		GNDD019	24.00	1.90	1.0	5.3	5.3	3.4	0.12	0.03	
		GNDD020	71.25	8.25	17.7	257	0.30	21.1	0.60	0.68	
		inc	74.00	5.50	26.0	355	0.42	30.7	0.05	0.21	1
		and	83.30	0.65	0.03	2.7	10.70	4.7	0.00	0.02	
		GNDD021	14.80	1.20	11.0	9.0	0.39	11.3	0.01	0.08	1
		and	31.50	0.35	28.1	104	5.8	31.9	0.35	0.12	1
		and	98.20	19.80	0.29	2.2	3.4	1.8	0.01	0.04	2
		inc	98.20	9.80	0.40	4.4	6.8	3.4	0.01	0.07	
		inc	104.20	0.80	0.88	13	22.7	10.9	0.02	0.30	1
		GNDD022	NSI								
		GNDD023	58.00	5.00	0.32	3.7	0.1	0.41	0.01	0.09	
		GNDD024	85.00	6.00	2.5	19	0.15	2.8	0.40	1.4	
		inc	88.00	1.00	14.9	107	0.46	16.5	2.4	8.3	1
		GNDD025	53.00	88.00	0.94	2.3	0.10	1.0	0.00	0.08	2
		inc	61.00	14.00	3.1	5.3	0.19	3.2	0.01	0.11	
		inc	79.00	11.00	1.3	4.1	0.16	1.4	0.00	0.25	
		inc	93.00	1.00	1.1	2.5	0.09	1.1	0.00	0.37	
		inc	113.00	2.00	1.2	4.4	0.02	1.2	0.00	0.01	
		inc	139.00	2.00	0.99	0.50	0.01	1.0	0.00	0.00	
		GNDD026	NSI								
		GNDD027	NSI								
		GNDD028	41.40	18.60	0.21	3.2	2.0	1.1	0.08	0.01	2
		inc	52.00	8.00	0.42	6.0	3.8	2.2	0.18	0.02	
		GNDD029	36.00	12.00	0.17	2.1	0.39	0.36	0.01	0.16	2
		GNDD030	33.00	3.00	0.95	53	0.05	1.6	0.01	0.05	
		GNDD031	32.00	28.00	0.43	5.7	0.15	0.56	0.01	0.04	2
		inc	48.00	1.10	3.3	17	0.34	3.7	0.02	0.33	
		inc	53.00	1.00	4.2	54	0.92	5.3	0.12	0.22	
		GNDD032	9.00	20.00	0.16	6.7	0.09	0.29	0.00	0.02	2

Issued Capital 658.2m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary									
		and	49.00	116.00	1.05	4.0	0.20	1.2	0.01	0.07	2
		inc	77.00	3.00	0.93	33.7	2.1	2.3	0.09	0.02	
		and	101.00	10.00	6.1	18.1	0.11	6.4	0.04	0.47	
		inc	101.00	6.00	9.6	18.7	0.15	9.9	0.05	0.61	1
		and	136.00	4.00	9.8	18.5	1.5	10.7	0.06	0.27	
		GNDD033	NSI								
		GNDD034	47.60	0.30	0.03	1.4	24.4	10.6	0.34	0.04	
		GNDD035	88.75	5.75	9.5	28.7	3.5	11.4	0.10	0.44	
		inc	88.75	3.15	17.1	28.8	5.6	19.9	0.14	0.56	1
		GNDD036	NSI								
		GNDD037	NSI								
		GNDD038	71.50	2.85	0.53	15.6	2.8	1.9	0.06	0.13	
		GNDD042	NSI								
		GNDD044	NSI								
		GNDD045	85.90	2.10	1.4	28.8	0.1	1.8	0.01	0.02	
		GNDD046	82.90	0.45	4.1	27	0.06	4.5	0.01	0.03	
		and	124.15	2.85	29.5	522	10.8	40.8	0.41	0.25	1
		GNDD047	61.00	38.50	1.3	1.2	0.04	1.3	0.00	0.02	2
		inc	62.50	6.00	6.3	3.5	0.15	6.4	0.01	0.10	
		and	74.10	1.50	1.0	1.9	0.00	1.0	0.00	0.00	
		and	83.55	0.45	7.3	12.2	0.00	7.5	0.00	0.00	
		and	98.50	1.00	1.2	8.0	0.00	1.2	0.00	0.00	
		GNDD048	36.00	19.00	0.6	5.0	0.25	0.81	0.01	0.06	2
		inc	38.00	3.15	2.7	12.1	0.09	2.9	0.03	0.14	
		GNDD049	NSI								
		GNDD050	21.00	22.00	0.21	2.9	0.53	0.48	0.01	0.15	2
		inc	21.00	2.00	1.4	4.8	0.07	1.5	0.01	0.07	
		GNRC051	NSI								
		GNRC052	69	6	1.7	4.4	0.32	1.9	0.03	0.00	
		GNRC053	NSI								
		GNRC054	13	7	0.22	3.9	0.03	0.28	0.00	0.01	2
		and	66	15	0.53	4.0	0.66	0.87	0.01	0.13	2
		inc	77	3	1.3	8.5	1.9	2.3	0.02	0.31	
		GNRC055	18	7	0.28	6.9	0.04	0.38	0.00	0.01	2
		GNRC056	56	1	2.3	138	0.08	4.1	0.01	0.07	
		GNRC057	37	12	0.06	2.4	0.58	0.34	0.01	0.06	2
		GNRC058	NSI								

Issued Capital 658.2m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary									
		GNRC059	NSI								
		GNDD060	NSI								
		GNRC061	NSI								
		GNRC062	17	3	3.8	7.9	2.7	5.0	0.24	0.17	
		GNRC063	19	1	0.01	0.46	2.8	1.2	0.04	0.01	
		GNRC064	22	. 1	0.01	4.2	3.8	1.7	0.00	0.00	
		and	27		0.69	27	1.2	1.6	0.35	0.23	
		GNRC065	33	6	0.00	2.1	4.9	2.1	0.05	0.01	
		GNRC066	NSI								
		GNRC067	NSI								
		GNRC068	9	69	3.4	8.3	2.8	4.7	0.23	0.08	2
		inc	9		7.9	16	7.0	11.2	0.59	0.16	
		and	51		1.0	40	0.93	1.9	0.08	0.12	
		and	59		1.3	4.9	0.09	1.4	0.00	0.02	
		and	66	5 2	1.6	1.2	0.02	1.7	0.01	0.00	
		and	72	2 4	1.9	3.0	0.06	1.9	0.01	0.04	
		GNRC069	18	3 7	0.62	3.0	0.11	0.71	0.01	0.16	2
		inc	19	1	2.2	8.6	0.15	2.4	0.03	0.59	
		and	53	10	0.65	5.7	0.37	0.88	0.01	0.03	2
		inc	59	3	1.7	11	0.84	2.3	0.03	0.07	
		and	84	15	0.54	2.4	0.13	0.63	0.01	0.00	2
		inc	84	4	0.90	5.2	0.36	1.1	0.02	0.01	
		and	96	5 1	1.0	1.4	0.06	1.0	0.03	0.00	
		GNRC070	41	. 1	6.6	3.1	0.36	6.8	0.02	0.21	
		GNRC071	48	3 2	0.45	5.4	2.1	1.4	0.01	0.12	
		GNRC072	43	19	0.16	4.9	0.13	0.28	0.00	0.09	2
		GNDD073	NSI	I							
		GNDD074	41	. 2	1.2	20.5	0.04	1.4	0.00	0.02	
		and	47	2	0.8	16.7	0.13	1.1	0.03	0.03	
		GNRC075	31		0.78	1.6	0.07	0.83	0.01	0.22	2
		inc	37		2.2	1.6	0.08	2.2	0.01	0.32	
		and	46		1.8	2.4	0.08	1.9	0.00	0.07	
		GNRC076	35		12.2	7.2	0.02	12.3	0.01	0.10	
		inc	35		53.1	18	0.00	53.3	0.00	0.02	1
		GNDD077	168.50		0.68	5.9	0.64	1.0	0.01	0.01	2
		inc	168.50	1.00	1.5	59.3	6.6	5.2	0.13	0.08	
		inc	180.60		1.8	4.9	0.78	2.2	0.02	0.01	

Issued Capital 658.2m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary									
		and	192.90	1.10	0.70	5.5	0.61	1.0	0.02	0.00	
		GNRC078	11	17	0.13	1.7	0.43	0.34	0.01	0.09	2
		inc	12	1	0.74	4.8	0.91	1.2	0.03	0.33	
		GNDD079	21.00	61.00	1.1	1.1	0.11	1.1	0.00	0.02	2
		inc	21.00	9.00	1.9	1.9	0.09	2.0	0.00	0.02	
		inc	40.00	2.00	2.7	1.7	0.08	2.8	0.00	0.06	
		inc	46.00	6.00	5.0	1.2	0.07	5.1	0.00	0.01	
		inc	74.00	3.00	1.0	0.86	0.17	1.1	0.00	0.12	
		GNRC080	NSI								
		GNRC081	23	30	0.28	2.0	0.33	0.45	0.01	0.10	2
		inc	32	5	1.0	3.6	0.73	1.4	0.01	0.20	
		GNDD082	168.00	15.00	0.68	0.39	0.04	0.70	0.00	0.01	2
		inc	168.00	1.00	2.4	0.46	0.11	2.4	0.00	0.02	
		inc	175.00	0.50	10.0	5.6	0.44	10.2	0.01	0.20	
		and	193.40	34.10	1.45	1.0	0.25	1.6	0.02	0.13	2
		inc	193.40	1.00	2.2	7.9	1.6	3.0	0.14	1.7	
		inc	203.50	0.90	2.6	10.6	2.9	4.0	0.16	1.4	
		inc	209.80	2.20	0.59	4.5	0.74	1.0	0.03	0.25	
		and	235.00	31.00	0.4	0.6	0.08	0.43	0.00	0.00	
		inc	242.50	1.50	1.0	2.1	0.21	1.1	0.01	0.01	
		GNDD083	11.00	21.00	0.22	10.0	0.15	0.41	0.00	0.01	2
		inc	19.20	1.80	1.0	6.1	0.10	1.1	0.00	0.00	
		and	170.00	1.00	1.3	3.6	0.22	1.4	0.02	0.26	
		GNRC084	4	1	1.2	2.0	0.07	1.2	0.00	0.06	
		and	41	3	5.2	6.4	5.0	7.5	0.08	0.14	
		and	60	4	3.6	11.6	5.0	6.0	0.02	0.05	
		and	78	21	0.81	2.6	0.08	0.88	0.00	0.00	2
		inc	91	1	6.7	10.7	0.42	7.0	0.01	0.00	
		and	97	2	1.6	1.2	0.03	1.6	0.01	0.00	
		and	143	2	0.67	4.9	0.87	1.1	0.00	0.01	
		GNDD085	22.50	1.30	5.47	75.6	0.08	6.5	0.01	0.09	
		and	39.30	2.20	2.11	2.4	0.55	2.4	0.01	0.24	
		GNRC086	3	21	0.38	1.5	0.33	0.55	0.01	0.08	2
		inc	4	1	0.85	3.4	0.89	1.3	0.03	0.27	
		and	22	2	2.9	1.9	0.08	3.0	0.01	0.03	
		GNRC087	22	4	0.65	15.9	0.26	1.0	0.00	0.04	
		GNDD088A	45.05	23.45	0.07	0.23	0.53	0.31	0.00	0.01	2

Issued Capital 658.2m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary									
		and	90.50	1.50	1.8	0.10	0.01	1.8	0.00	0.00	
		and	224.00	39.00	5.5	2.0	0.30	5.6	0.01	0.00	2
		incl	231.50	14.40	14.4	3.3	0.67	14.8	0.00	0.00	
		incl	238.50	7.40	23.4	5.7	1.27	24.1	0.01	0.01	1
		GNDD089	20.00	30.00	0.95	1.69	0.09	1.0	0.00	0.02	2
		inc	22.00	2.00	1.4	2.7	0.18	1.5	0.00	0.00	
		inc	30.50	1.70	2.9	2.3	0.12	3.0	0.00	0.01	
		inc	40.00	10.00	1.4	0.55	0.09	1.4	0.00	0.02	
		and	94.50	21.70	0.88	1.59	0.43	1.1	0.00	0.04	2
		inc	94.50	5.10	2.4	1.6	0.06	2.4	0.01	0.07	
		inc	102.50	1.50	1.9	1.5	0.15	2.0	0.01	0.03	
		inc	109.00	1.50	1.8	11.3	0.32	2.1	0.01	0.16	
		GNRC090	7	13	0.35	2.7	0.25	0.49	0.01	0.07	2
		inc	14	1	1.1	7.3	0.45	1.4	0.02	0.21	
		GNRC091	30	24	0.38	3.7	0.20	0.51	0.01	0.10	2
		inc	43	4	1.4	3.5	0.40	1.6	0.01	0.36	
		GNDD092	164.50	9.00	0.29	0.72	0.12	0.35	0.00	0.05	2
		and	213.00	17.00	0.23	0.63	0.06	0.26	0.00	0.04	2
		and	257.50	1.00	3.6	5.9	0.60	3.9	0.05	0.21	
		GNDD093	75.30	1.40	2.1	10.6	7.8	5.6	0.18	0.22	
		and	153.65	0.50	1.4	7.3	0.17	1.6	0.11	0.03	
		GNRC094	13	12	0.83	4.6	0.44	1.1	0.01	0.06	2
		inc	13	1	1.1	6.3	0.17	1.2	0.02	0.12	
		inc	17	1	8.3	20.6	0.27	8.7	0.06	0.52	
		inc	23	1	0.21	4.5	3.8	1.9	0.01	0.03	
		GNDD095	47.00	17.47	0.28	1.0	0.44	0.49	0.02	0.09	2
		inc	50.00	1.30	1.0	0.92	2.8	2.3	0.18	0.61	
		and	121.00	1.00	2.6	1.7	0.01	2.6	0.00	0.00	
		GNDD096	NSI								
		GNRC097	49	8	0.39	2.2	0.04	0.44	0.00	0.02	2
		inc	50	1	1.1	2.8	0.03	1.2	0.00	0.03	
		GNRC098	40	19	0.21	1.8	0.19	0.32	0.01	0.16	2
		and	88	8	4.9	4.5	0.76	5.3	0.02	0.07	2
		inc	88	2	15.6	15.9	2.8	17.0	0.07	0.20	2
		inc	94	2	2.6	1.2	0.13	2.7	0.00	0.03	_
		GNDD099	53.00	2.80	0.42	19.8	2.0	1.5	0.09	0.33	
		and	64.00	0.90	3.1	9.7	0.22	3.3	0.01	0.01	
I .		and	04.00	0.50	٥.1	5.1	0.22	5.5	0.01	0.01	

Issued Capital 658.2m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary									
		and	101.00	1.00	2.9	64.4	0.04	3.7	0.01	0.04	
		GNDD100	NSI								
		GNDD101	NSI								
		GNDD102	36.00	11.00	0.59	3.2	0.18	0.71	0.01	0.11	2
		inc	36.00	2.00	1.5	5.9	0.13	1.6	0.01	0.14	
		and	77.40	8.90	0.10	2.5	0.82	0.49	0.01	0.06	2
		inc	84.30	0.90	-	1.3	3.3	1.4	0.02	0.03	
		GNDD103	NSI								
		GNRC104	141	1	45.6	40.0	2.6	47.2	0.25	3.4	1
		GNDD105	NSI								
		GNDD106	100.00	25.00	0.66	0.29	0.01	0.67	0.00	0.00	2
		inc	114.00	1.50	1.8	1.7	0.01	1.8	0.00	0.00	
		inc	121.00	4.00	2.6	0.34	0.01	2.6	0.00	0.00	
		and	141.35	1.05	1.2	2.8	0.84	1.6	0.01	0.01	
		and	205.00	8.00	0.48	1.0	0.02	0.50	0.00	0.00	2
		inc	211.00	2.00	1.1	2.2	0.03	1.1	0.00	0.00	
		GNRC107	16	27	3.6	14.8	0.25	3.9	0.01	0.1	2
		inc	23	1	0.17	74.4	0.07	1.1	0.01	0.1	
		inc	29	2	1.2	12.2	0.06	1.3	0.01	0.1	
		inc	35	7	13.3	12.6	0.80	13.8	0.02	0.3	
		and	52	1	0.18	73.2	0.11	1.2	0.00	0.1	
		and	93	1	0.12	51.2	3.1	2.1	0.03	0.65	
		GNDD108	NSI								
		GNDD109	NSI								
		GNRC110	11	44	2.8	62.7	0.05	3.7	0.01	0.25	2
		inc	12	1	1.7	1.0	0.00	1.7	0.00	0.04	
		inc	20	11	1.8	37.2	0.02	2.3	0.01	0.37	
		inc	36	12	8.3	190	0.12	10.7	0.02	0.51	
		inc	41	3	27.3	613	0.05	35.1	0.03	0.87	1
		GNRC111	31	18	0.31	12.2	0.13	0.52	0.01	0.03	2
		inc	33	1	1.3	59.4	0.02	2.1	0.01	0.27	
		inc	41	1	2.1	82.7	0.01	3.2	0.01	0.10	
		GNDD112	95.00	0.40	0.5	26.6	6.0	3.5	0.10	1.9	
		GNDD113	149.50	37.50	0.59	17.0	0.12	0.86	0.01	0.08	2
		inc	151.00	9.00	1.3	56.2	0.17	2.1	0.05	0.11	
		inc	170.50	1.50	1.7	5.7	0.33	2.0	0.01	0.11	
		and	219.00	11.00	0.79	2.2	0.08	0.86	0.00	0.08	2

Issued Capital 658.2m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary									
		inc	223.00	7.00	1.1	2.5	0.09	1.1	0.00	0.05	
		GNDD113A	61.00	2.00	0.59	2.6	0.74	0.95	0.03	0.07	
		and	139.00	107.00	0.30	3.0	0.09	0.37	0.00	0.04	2
		inc	185.00	1.40	1.6	2.5	0.07	1.7	0.00	0.05	
		inc	197.00	2.00	1.2	0.94	0.17	1.3	0.00	0.04	
		inc	202.00	1.50	3.2	2.4	0.90	3.6	0.02	0.16	
		inc	209.00	2.00	1.2	1.9	0.25	1.3	0.01	0.25	
		and	262.00	104.00	1.5	2.7	0.39	1.7	0.01	0.12	2
		inc	266.00	2.00	1.0	1.8	0.22	1.1	0.00	0.02	
		inc	274.00	2.00	1.3	1.4	0.06	1.3	0.00	0.01	
		inc	280.00	15.00	3.6	6.9	0.56	3.9	0.04	0.73	
		inc	289.45	3.65	6.7	20.2	1.5	7.6	0.15	2.6	1
		inc	298.65	7.45	2.9	3.7	0.63	3.2	0.02	0.01	
		inc	315.50	1.20	1.0	1.4	0.13	1.1	0.00	0.02	
		inc	333.80	4.20	11.3	22.8	5.3	13.9	0.12	0.04	
		inc	333.80	0.70	60.8	133	31.4	76.1	0.70	0.22	1
		inc	354.00	4.00	1.4	8.0	0.02	1.4	0.00	0.00	
			274.00	84.00	1.7	3.3	0.48	2.0	0.02	0.14	4
		and	390.00	30.00	0.35	0.36	0.05	0.38	0.00	0.00	2
		inc	394.00	2.00	1.2	0.33	0.04	1.2	0.00	0.00	
			139.00	227.00	0.83	2.7	0.22	1.0	0.01	0.07	3
			139.00	281.00	0.71	2.2	0.19	0.82	0.01	0.06	3
			106.00	314.00	0.65	2.1	0.17	0.75	0.01	0.05	
		GNDD114	64.00	14.70	3.2	3.3	0.08	3.3	0.01	0.06	
		inc	77.80	0.90	50.3	27.2	0.18	50.7	0.03	0.65	
		GNDD115	68.70	1.10	0.62	9.2	2.0	1.6	0.04	0.36	
		and	144.00	2.00	0.30	16.2	1.2	1.0	0.07	0.38	
		and	176.50	34.50	0.28	0.68	0.01	0.29	0.00	0.03	2
		GNDD116	27.50	4.50	1.3	14.6	0.06	1.5	0.00	0.02	2
		inc	27.50	1.00	3.7	41.4	0.13	4.3	0.01	0.05	
		and	73.70	0.80	2.4	3.9	0.26	2.5	0.00	0.00	
		GNDD117	30.00	54.80	0.58	4.2	0.13	0.69	0.01	0.07	2
		inc	61.00	10.00	2.5	10.2	0.16	2.7	0.01	0.14	
		inc	84.20	0.60	1.4	4.1	0.11	1.5	0.01	0.02	
		and	106.70	0.40	8.5	43.4	3.3	10.5	0.25	2.92	1
		GNDD118	NSI								
		GNDD119	52.40	0.80	0.21	17.4	4.2	2.3	0.03	0.25	

Issued Capital 658.2m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary									
		GNDD120	NSI								
		GNDD121	NSI								
		GNDD122	11.50	18.10	0.64	2.2	0.03	0.68	0.00	0.01	2
		inc	21.00	6.00	1.1	3.2	0.04	1.2	0.00	0.01	
		and	54.00	21.00	0.41	0.80	0.12	0.47	0.00	0.04	2
		inc	71.00	2.00	1.2	1.0	0.14	1.2	0.00	0.09	
		and	191.00	1.50	1.6	24.4	0.95	2.3	0.10	1.24	
		and	213.80	3.20	1.7	2.1	0.23	1.8	0.01	0.02	
		and	236.00	1.50	4.8	4.9	0.63	5.1	0.03	0.16	
		GNDD123	21.00	30.00	0.11	1.6	0.32	0.27	0.01	0.04	2
		GNDD124	44.00	7.00	0.08	3.6	0.65	0.40	0.02	0.13	2
		GNDD125	NSI								
		GNDD126	107.30	1.10	12.8	10.3	0.74	13.3	0.00	0.16	1
		and	120.00	2.00	3.2	3.6	0.16	3.4	0.01	0.00	
		and	157.30	0.50	1.0	22.1	2.2	2.2	0.11	2.3	
		and	179.00	2.00	1.7	0.62	0.01	1.7	0.00	0.00	
		GNDD127	NSI								
		GNDD128	63.00	20.00	0.49	0.42	0.02	0.50	0.00	0.00	2
		inc	77.50	1.50	4.1	0.36	0.04	4.1	0.00	0.00	
		GNDD129	15.00	21.00	0.72	1.8	0.10	0.79	0.00	0.05	2
		inc	24.00	10.00	1.0	2.1	0.13	1.1	0.00	0.04	
		and	132.50	0.70	6.7	14.1	0.15	7.0	0.01	0.12	
		GNDD130	NSI								
		GNDD131	NSI								
		GNDD134	17.70	15.30	0.80	7.5	0.07	0.92	0.00	0.11	2
		inc	19.00	10.00	1.04	9.9	0.08	1.2	0.01	0.12	
		and	47.00	39.75	0.26	0.5	0.10	0.31	0.00	0.04	2
		and	129.50	7.50	0.45	0.5	0.06	0.48	0.00	0.02	2
		and	161.00	20.00	0.29	3.6	0.23	0.44	0.01	0.03	2
		inc	177.50	0.50	3.79	29.8	5.23	6.4	0.16	0.10	
		and	196.00	4.00	5.3	86.2	10.60	11.0	0.24	0.57	
		and	240.00	2.00	6.2	1.3	0.02	6.2	0.00	0.00	
		and	272.00	50.00	0.22	0.5	0.14	0.28	0.00	0.00	2
		and	500.10	0.95	2.3	8.1	0.16	2.5	0.21	0.00	
		and	519.00	20.00	0.73	0.7	1.80	1.5	0.02	0.00	2
		inc	529.50	2.90	4.7	3.6	11.6	9.8	0.12	0.00	
		and	560.25	17.75	0.20	0.7	0.38	0.37	0.01	0.00	2

Issued Capital 658.2m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary									
		inc	560.25	0.75	0.09	2.0	4.94	2.3	0.05	0.00	
		inc	570.20	0.50	1.22	9.6	2.36	2.4	0.17	0.02	
		and	630.30	0.70	0.9	1.6	0.21	1.0	0.18	0.00	
		GNDD137	27.00	38.00	0.38	1.1	0.05	0.42	0.00	0.02	2
		inc	33.00	4.00	1.70	1.2	0.13	1.8	0.00	0.02	
		and	186.25	1.35	8.12	29.5	7.3	11.6	0.12	0.03	
		GNDD139	80.00	207.50	0.75	1.7	0.10	0.82	0.00	0.02	2
		inc	80.00	32.00	1.6	2.5	0.06	1.6	0.00	0.03	
		inc	148.00	4.25	1.2	3.8	0.15	1.3	0.00	0.09	
		inc	167.00	14.00	1.5	0.32	0.01	1.5	0.00	0.01	
		inc	243.00	9.00	2.4	3.7	0.62	2.8	0.00	0.01	
		inc	266.00	6.00	1.6	0.61	0.01	1.6	0.00	0.00	
			243.00	29.00	1.2	1.6	0.24	1.3	0.00	0.00	4
		GNDD141	101.50	6.50	14.3	43.6	3.4	16.3	0.15	1.6	2
		inc	101.50	2.50	36.8	111	8.6	41.9	0.30	4.2	1
		GNDD142	55.8	0.7	0.7	13.3	4.0	2.7	0.05	0.03	
		and	81.5	27.5	2.4	11.1	0.9	2.9	0.03	0.06	2
		inc	92.0	11.5	5.4	19.9	2.0	6.5	0.08	0.13	
		inc	107.0	2.0	0.9	5.3	0.2	1.0	0.00	0.03	
		and	125.0	11.0	0.3	3.2	0.1	0.39	0.00	0.01	2
		inc	132.9	1.1	1.6	4.6	0.1	1.7	0.01	0.08	
		and	152.0	40.0	5.1	11.7	1.9	6.1	0.05	0.12	2
		inc	153.1	1.0	23.4	40.1	13.5	29.8	0.34	0.00	1
		inc	160.0	10.7	10.7	28.4	4.9	13.2	0.13	0.15	
		inc	166.2	4.5	23.9	41.3	11.0	29.2	0.29	0.27	1
		inc	177.2	12.8	5.2	9.3	0.7	5.6	0.02	0.24	
		inc	187.1	1.0	44.0	53.8	6.5	47.5	0.15	2.1	1
		and	237.0	0.5	1.1	2.7	0.1	1.2	0.01	0.17	
			81.5	110.5	2.5	7.4	0.9	3.0	0.03	0.06	3
		GNDD143	NSI								
		GNDD145	NSI								
		GNDD148	16.00	7.00	0.14	1.7	0.43	0.35	0.01	0.18	2
		and	59.00	2.00	0.00	1.0	2.7	1.2	0.01	0.01	
		GNDD149	8.00	4.00	0.63	1.5	0.28	0.77	0.01	0.07	
		GNDD151	379.75	0.50	0.71	18.6	8.9	4.8	0.17	0.17	
		GNDD155	59.00	209.00	1.0	1.4	0.09	1.1	0.00	0.02	2
		inc	59.00	34.00	3.8	4.6	0.20	3.9	0.02	0.03	

Issued Capital 658.2m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary									
		inc	81.00	4.00	13.4	10.5	0.06	13.5	0.05	0.02	
		inc	102.00	6.00	1.2	1.1	0.10	1.2	0.00	0.03	
			59.00	49.00	2.8	3.6	0.16	3.0	0.01	0.02	4
		inc	151.55	0.45	7.7	2.9	4.5	9.6	0.00	0.10	
		inc	182.00	1.00	8.8	17.1	2.2	10.0	0.07	0.89	
		inc	224.00	2.00	2.0	0.29	0.01	2.0	0.00	0.00	
		inc	244.00	11.00	1.1	0.56	0.04	1.1	0.00	0.00	
		inc	266.00	0.55	1.8	1.2	0.02	1.8	0.00	0.00	
		and	338.00	9.00	0.41	0.33	0.05	0.43	0.00	0.00	2
		GNDD156	5.00	7.00	0.68	3.0	0.70	1.0	0.02	0.15	
		GNDD157	20.00	66.00	0.52	1.1	0.08	0.57	0.00	0.07	2
		inc	54.00	10.00	2.2	1.8	0.14	2.3	0.00	0.24	
		and	132.90	10.00	0.18	6.6	0.52	0.48	0.01	0.08	2
		inc	132.90	0.50	0.88	13.1	1.4	1.6	0.03	0.67	
		inc	142.30	0.60	1.0	29.1	6.6	4.2	0.11	0.33	
		and	237.20	130.80	2.3	1.6	0.37	2.5	0.00	0.01	2
		inc	237.20	0.80	1.7	59.1	5.6	4.9	0.18	1.2	
		inc	255.80	1.20	0.63	5.3	9.4	4.8	0.01	0.01	
		inc	289.00	12.00	20.4	4.8	1.0	20.9	0.00	0.00	
		inc	290.50	4.06	55.7	12.9	2.1	56.8	0.01	0.01	1
		inc	321.00	2.00	1.3	0.6	0.01	1.3	0.00	0.00	
		inc	331.00	6.00	2.5	1.9	0.61	2.8	0.01	0.01	
		inc	343.00	9.00	1.7	0.6	0.10	1.7	0.00	0.00	
		and	407.50	0.50	2.2	1.2	0.37	2.4	0.00	0.00	
		GNDD159	NSI								
		GNDD163	93.00	45.00	0.38	1.7	0.26	0.51	0.01	0.08	2
		inc	101.00	3.00	1.3	7.9	0.51	1.6	0.01	0.19	
		inc	125.20	1.65	1.7	3.7	0.88	2.2	0.02	0.13	
		GNDD164	136.00	22.00	0.38	0.8	0.14	0.45	0.00	0.03	2
		inc	141.50	0.50	1.1	1.1	0.29	1.2	0.00	0.03	
		inc	150.00	1.60	1.4	1.2	0.06	1.4	0.00	0.02	
		and	171.00	10.00	0.48	0.23	0.01	0.48	0.00	0.00	2
		inc	171.00	2.00	1.1	0.23	0.01	1.1	0.00	0.00	
		and	239.00	37.00	0.75	2.1	0.46	1.0	0.02	0.00	2
		inc	239.00	4.45	4.9	14.9	3.4	6.5	0.14	0.01	
		GNDD167	NSI								
		GNDD169	120.00	60.80	0.78	0.74	0.15	0.86	0.01	0.01	2

Issued Capital 658.2m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary									
		inc	152.00	28.80	1.5	1.22	0.31	1.70	0.01	0.02	
		inc	152.00	1.50	1.8	3.8	0.91	2.3	0.02	0.02	
		inc	176.00	4.80	8.4	5.3	1.5	9.2	0.05	0.09	
		inc	180.05	0.75	52.5	33.2	9.6	57.1	0.32	0.60	
		and	208.00	125.50	1.1	3.6	0.09	1.1	0.00	0.03	2
		inc	208.00	71.00	1.7	6.0	0.15	1.8	0.01	0.05	2
		inc	228.80	29.00	3.7	12.5	0.26	4.0	0.02	0.11	
		inc	302.50	9.00	0.92	0.46	0.02	0.94	0.00	0.00	2
		inc	307.70	1.30	4.7	0.80	0.01	4.7	0.00	0.00	
		inc	321.00	12.50	0.26	0.92	0.02	0.28	0.00	0.00	2
		GNDD170A	13.00	10.00	0.57	5.2	0.29	0.76	0.01	0.07	
		and	174.00	6.00	0.67	0.28	0.02	0.68	0.00	0.00	
		GNDD171	126.00	10.75	0.37	1.9	0.15	0.46	0.00	0.08	2
		inc	134.00	1.40	1.1	5.9	0.76	1.5	0.01	0.39	
		and	193.00	3.90	0.32	0.42	0.01	0.33	0.00	0.00	2
		and	270.00	0.50	1.3	2.5	0.65	1.6	0.01	0.01	
		and	327.00	2.60	1.9	6.1	1.1	2.4	0.04	0.09	
		GNDD174	24.00	76.00	1.0	31.0	0.91	1.8	0.04	0.13	2
		inc	60.90	11.25	6.4	64.1	5.3	9.5	0.23	0.58	
		inc	60.90	5.95	10.7	109	7.9	15.5	0.38	0.95	1
		inc	96.00	4.00	0.20	359	0.26	4.9	0.02	0.22	
		and	163.00	39.50	0.47	2.3	0.31	0.63	0.02	0.02	2
		inc	167.55	4.20	1.5	15.0	2.5	2.8	0.11	0.02	
		inc	199.00	2.00	1.5	0.17	0.01	1.5	0.00	0.00	
		GNDD175	176.00	6.00	0.34	6.3	0.12	0.47	0.00	0.07	2
		GNDD178	14.00	28.00	0.22	17.5	0.26	0.56	0.01	0.04	2
		inc	20.00	2.00	0.20	118	0.11	1.7	0.01	0.11	
		inc	39.00	1.30	0.80	4.8	3.9	2.6	0.04	0.04	
		and	53.00	2.00	0.05	81.0	0.04	1.1	0.00	0.03	
		and	65.15	1.85	1.1	3.3	0.81	1.5	0.01	0.12	
		and	89.15	0.85	4.9	302	0.40	8.9	0.11	0.67	
		GNDD181	7.70	3.60	0.66	22.2	1.0	1.4	0.03	0.19	2
		inc	7.70	1.45	1.1	45.3	1.5	2.3	0.07	0.36	
		and	180.60	7.40	0.46	0.54	0.03	0.48	0.00	0.00	2
		inc	180.60	0.55	1.2	0.83	0.07	1.2	0.00	0.00	
		GNDD182	92.00	34.00	0.28	1.1	0.09	0.33	0.00	0.01	2
		inc	92.00	19.00	0.37	1.0	0.07	0.41	0.00	0.01	2

Issued Capital 658.2m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary									
		inc	96.00	2.00	2.0	1.9	0.01	2.0	0.01	0.01	
		and	148.70	4.30	31.8	96.5	8.1	36.6	0.55	5.3	
		inc	148.70	3.45	39.6	118	10.0	45.4	0.68	6.5	1
		GNDD184	NSI								
		GNDD188	198.00	66.00	0.29	6.6	0.13	0.43	0.00	0.05	2
		inc	212.00	4.00	0.89	21.9	0.19	1.3	0.00	0.08	
		inc	252.00	4.55	1.1	4.5	0.38	1.3	0.01	0.03	
		GNDD189	58.60	5.20	16.7	129	6.1	21.0	0.23	1.05	
		inc	60.00	3.80	21.1	148	6.6	25.8	0.21	0.06	1
		and	174.00	6.65	0.15	2.0	0.22	0.27	0.01	0.00	2
		and	191.00	6.00	0.21	2.1	0.30	0.37	0.02	0.24	2
		GNDD192	15.00	50.00	0.28	0.60	0.06	0.31	0.00	0.01	2
		inc	28.00	20.00	0.44	0.59	0.06	0.47	0.00	0.01	2
		and	107.45	1.75	0.53	8.2	0.09	0.68	0.04	0.01	2
		and	176.00	0.60	1.2	24.8	7.0	4.6	0.24	0.01	
		GNDD195	29.00	2.55	1.3	1.1	0.02	1.4	0.00	0.01	2
		inc	30.00	1.55	1.6	1.4	0.02	1.7	0.00	0.01	
		and	60.00	3.85	5.3	48.6	8.0	9.4	0.14	0.15	
		inc	60.80	3.05	6.1	52.0	8.1	10.2	0.13	0.13	1
		and	346.30	3.70	0.89	0.75	0.04	0.92	0.02	0.00	2
		inc	346.30	0.50	5.2	1.3	0.01	5.2	0.08	0.00	
		GNDD196	9.00	69.20	3.3	4.8	0.10	3.4	0.01	0.07	2
		inc	17.00	12.00	1.7	0.69	0.06	1.8	0.00	0.03	
		inc	69.00	9.20	21.9	16.0	0.38	22.2	0.03	0.38	
		inc	69.00	1.30	137	47.6	0.21	137.2	0.01	1.2	1
		and	279.50	0.60	2.0	0.22	0.00	2.0	0.00	0.00	
		GNDD200	168.25	66.75	0.61	0.56	0.07	0.65	0.00	0.00	2
		inc	176.45	7.15	1.0	0.59	0.03	1.1	0.00	0.00	
		inc	208.00	6.00	1.1	0.62	0.05	1.1	0.00	0.00	
		inc	232.00	1.00	4.7	5.6	1.3	5.3	0.05	0.00	
		GNDD202	33.00	110.00	0.26	3.1	0.12	0.36	0.00	0.01	2
		inc	71.75	59.25	0.35	4.7	0.20	0.50	0.01	0.01	2
		inc	98.00	10.00	1.0	21.7	0.70	1.6	0.03	0.02	
		inc	127.00	2.00	1.2	1.1	0.02	1.2	0.00	0.01	
		GNDD203	210.50	0.60	3.6	81.9	10.2	9.0	0.38	3.93	
		and	227.00	2.00	1.4	4.3	0.12	1.5	0.01	0.04	
		and	299.00	21.80	2.4	22.2	4.0	4.5	0.06	0.45	2

Issued Capital 658.2m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary									
		inc	300.25	20.55	2.6	23.1	4.2	4.7	0.07	0.48	
		inc	300.25	3.55	9.3	96.8	13.1	16.2	0.31	2.0	2
		GNDD204	95.00	44.00	3.2	4.5	0.11	3.3	0.00	0.04	2
		inc	97.38	20.62	6.4	6.4	0.11	6.6	0.00	0.06	
		and	183.00	1.00	1.2	6.7	0.44	1.5	0.01	0.33	
		GNDD207	114.00	0.90	2.0	1.9	0.09	2.1	0.02	0.06	
		and	122.55	2.45	8.5	15.5	1.0	9.1	0.04	0.90	
		and	169.50	3.50	0.16	68.2	0.13	1.1	0.01	0.12	2
		inc	170.70	2.30	0.20	98.2	0.17	1.5	0.01	0.16	
		and	217.40	25.60	0.36	0.93	0.05	0.39	0.00	0.01	2
		inc	233.00	4.00	1.4	0.64	0.01	1.4	0.00	0.01	
		and	269.35	1.95	1.7	3.4	0.35	1.9	0.01	0.11	
		GNDD208	170.00	73.65	0.51	1.4	0.21	0.62	0.01	0.04	2
		inc	180.00	2.00	2.2	0.88	0.01	2.2	0.00	0.00	
		inc	208.00	35.65	0.85	2.6	0.41	1.1	0.01	0.07	2
		inc	212.00	13.00	1.9	5.0	0.78	2.3	0.03	0.20	
		GNDD211	168.80	23.20	0.51	0.82	0.12	0.57	0.00	0.02	2
		inc	177.10	4.35	1.5	2.0	0.27	1.6	0.00	0.00	
		GNDD215	126.20	14.60	1.4	2.4	0.35	1.6	0.01	0.03	2
		inc	132.50	8.30	2.1	2.1	0.40	2.3	0.01	0.01	
		and	159.00	41.00	0.15	3.1	0.08	0.23	0.01	0.04	2
		GNDD218	198.00	5.05	0.39	0.16	0.01	0.39	0.00	0.00	2
		Holes specifica	ally drilled fo	r metallur	gical tes	t sample	material:				
		GMDD039	18.00	8.00	0.15	1.9	0.60	0.43	0.01	0.07	2
		and	67.60	1.00	24.5	58	3.9	26.9	0.27	1.8	1
		GMDD040	116.72	8.68	5.5	12	2.2	6.7	0.06	0.00	
		inc	122.50	2.90	11.8	24	4.2	14.0	0.14	0.00	1
		GMDD041	31.00	16.0	2.6	4.9	0.27	2.8	0.01	0.25	2
		inc	41.70	2.0	20.0	29	1.2	20.8	0.06	1.7	
		and	63.50	5.1	7.9	83	7.9	12.3	0.47	0.21	
		GMDD043	18.00	10.00	0.09	1.7	0.48	0.32	0.01	0.10	2
		and	70.50	0.30	25.9	81	9.4	31.0	0.33	3.1	1
		(1) cut of	f 10 g/t Au ec								

- (1) cut off 10 g/t Au equivalent
- (2) cut off 0.2 g/t Au equivalent
- (3) combined zones with 0.2 g/t Au cut off (grades include internal dilution from between zones)
- (4) combined zones with 1.0 g/t Au cut-off (grades include internal dilation from between zones) NSI: no significant intersection

Criteria	JORC Code explanation	Commentary									
		Channel Sample Results:									
		Channel_id	from (m)	interval (m)	Au (g/t)	Ag (g/t)	Zn (%)	AuEq (g/t)	Cu (%)	Pb (%)	Note
		RNNV10_01	NSI								_
		RNNV10_02	0.0	2.0	8.8	62.9	1.2	10.1	0.04	0.28	1
		RNNV10_03	0.0	5.0	20.5	53.1	7.5	24.5	0.37	0.32	
		inc	1.0	4.0	25.6	60.5	8.3	30.0	0.37	0.40	1
		RNNV10_04	0.0	71.0	9.2	22.5	3.0	10.8	0.09	0.31	2
		inc	0.0	26.0	21.2	28.4	7.2	24.7	0.14	0.10	
		inc	5.0	6.0	89.3	88.5	3.4	91.9	0.20	0.11	1
		inc	24.0	1.0	0.78	4.5	22.4	10.6	0.02	0.12	1
		inc	54.0	17.0	5.9	45.2	1.5	7.1	0.17	1.1	
		inc	55.0	1.0	21.4	37.5	1.5	22.5	0.40	0.47	1
		inc	62.0	2.0	12.1	256	5.8	17.8	0.72	4.3	1
		inc	68.0	2.0	17.5	53.8	2.4	19.2	0.17	1.9	1
		and	173.0	4.0	0.05	2.5	2.9	1.4	0.06	0.03	2
		inc	175.0	2.0	0.08	3.2	5.4	2.4	0.11	0.06	
		and	190.0	33.0	0.74	20.6	2.6	2.1	0.14	0.10	2
		inc	191.0	29.0	0.83	22.7	2.9	2.4	0.16	0.12	
		inc	192.0	1.0	0.36	291	26.2	15.4	2.5	1.5	1
		inc	215.0	1.0	14.8	27.6	1.0	15.6	0.04	0.95	1
		and	241.0	1.0	0.85	14.6	0.48	1.2	0.02	0.41	
		and	291.0	6.0	0.27	5.8	0.69	0.64	0.02	0.17	2
		inc	295.0	1.0	0.60	7.9	1.8	1.5	0.06	0.28	
		and	341.0	4.0	1.2	1.5	0.10	1.2	0.01	0.04	2
		inc	343.0	2.0	1.7	2.5	0.11	1.8	0.01	0.05	
		RNNV10_05	0.0	2.0	0.12	9.1	0.16	0.30	0.00	0.03	2
		RNNV10_06	0.0	10.0	1.4	90.9	7.2	5.7	0.83	0.23	2
		inc	0.0	9.0	1.5	99.6	8.0	6.2	0.81	0.26	
		inc	7.0	1.0	0.05	36.5	30.0	13.5	0.17	0.18	1
		RNNV10_07	0.0	4.0	0.16	4.4	1.1	0.68	0.06	0.05	2
		inc	3.0	1.0	0.33	14.8	3.2	1.9	0.21	0.17	_
		RNNV10_08	1.0	3.0	20.9	92.4	3.9	23.8	0.14	2.7	2
		inc	1.0	2.0	31.2	137	5.6	35.4	0.21	4.04	1
		RNNV10 09	NSI	2.0	J	-07	5.5	55.1	V		-
		RNNV10_10	0.0	2.0	0.20	3.3	0.31	0.38	0.00	0.04	2
		MUNV10-01	0.00	15.28	0.19	9.0	0.12	0.35	0.02	0.16	2

Issued Capital 658.2m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary									
		MUNV10-02	4.16	24.91	2.0	12.1	2.4	3.2	0.11	0.30	
		MUNV10-03	0.00	3.81	3.1	55.2	8.0	7.3	0.43	1.1	
		MUNV10-04	0.00	4.28	2.1	109	2.8	4.7	2.8	1.6	
		MGNV10-01	2.00	44.34	0.33	5.2	0.19	0.48	0.01	0.04	2
		inc	44.67	1.66	5.9	96.9	2.3	8.1	0.13	0.16	
		MGNV10-02	0.00	22.47	9.8	21.0	6.5	12.9	0.11	0.45	
		inc	0.00	4.21	34.7	29.4	22.1	44.7	0.32	1.9	1
		inc	8.39	2.54	14.1	93.7	0.67	15.6	0.13	0.29	1
		inc	15.92	2.77	8.2	18.1	0.15	8.5	0.03	0.25	1
		MGNV10-03	0.00	35.04	2.5	41.0	0.72	3.3	0.04	0.16	2
		inc	0.00	20.49	4.2	67.7	1.1	5.5	0.07	0.26	
		MGNV10-04	0.00	4.79	0.14	1.7	0.26	0.28	0.05	0.05	2
		MGNV10-05	0.00	12.00	13.8	105	3.0	16.5	0.05	0.21	
		inc	0.00	3.70	33.2	298	4.2	38.9	0.06	0.09	
		MGNV10-06	0.00	9.91	4.2	25.3	4.5	6.5	0.07	0.20	
		MGNV10-07	0.00	9.59	3.6	57.3	6.4	7.1	0.35	4.8	
		MGNV10-07	19.80	2.02	0.23	5.1	3.0	1.6	0.03	0.04	
		MGNV10-08	0.00	4.21	3.0	17.6	2.5	4.2	0.04	0.20	
		(1) cut off	10 g/t Au ec	uivalent			•				.
		(2) cut off	0.2 g/t Au e	quivalent							
		NSI: no sign	ificant inters	ection							

Data aggregation methods

- In reporting Exploration Results weighting averaging techniques maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.
- Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.
- The assumptions used for any reporting of metal equivalent values should be clearly stated.

Weighted average significant intercepts are reported to a gold grade equivalent (AuEq). Results are reported to cut-off grade of a 1.0 g/t Au equivalent and 10 g/t Au equivalent allowing for up to 2m of internal dilution between samples above the cut-off grade and 0.2 g/t Au equivalent allowing up to 6m of internal dilution between samples above the cut-off grade. The following metals and metal prices have been used to report gold grade equivalent: Au US\$ 1780 / oz Ag US\$24 /oz and Zn US\$ 2800 /t.

Metallurgical recoveries for Au, Ag and Zn have been estimated from metallurgical test work completed by SGS Metallurgical Operations in Lakefield, Ontario using a combination of gravity and flotation of a combined metallurgical sample from 5 drill holes. Using data from the test results, and for the purposes of the AuEq calculation gold recovery is estimated at 89%, silver at 84% and zinc at 79%. Accordingly, the formula used is AuEq (g/t) = Au (g/t) + [Ag (g/t) \times (24/1780) \times (0.84/0.89)] + [Zn (%) \times (28.00*31.1/1780) \times (0.79/0.89)]. Metallurgical test work and geological and petrographic descriptions suggest all the elements included in the metal equivalents calculation have a reasonable potential of eventual economic recovery. While Cu and Pb are reported in the table above, these metals are not used in the Au equivalent calculation at this early stage of the Project.

No top cuts have been applied to the reported grades.

Criteria	JORC Code explanation	Commentary
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known its nature should be reported. If it is not known and only the down hole lengths are reported there should be a clear statement to this effect (eg 'down hole length true width not known'). 	The mineralisation is moderately or steeply dipping and strikes NNE and ENE. For some drill holes, there is insufficient information to confidently establish the true width of the mineralized intersections at this stage of the exploration program. Apparent widths may be thicker in the case where bedding-parallel mineralisation may intersect ENE-striking cross faults and veins. Representative cross section interpretations have been provided with release of significant intersections to allow estimation of true widths from individual drill intercepts.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	Representative maps and sections are provided in the body of report.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	All available data have been reported.
Other substantive exploration data	 Other exploration data if meaningful and material should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density groundwater geotechnical and rock characteristics; potential deleterious or contaminating substances. 	Geological context and observations about the controls on mineralisation where these have been made are provided in the body of the report. 229 specific gravity measurements have been taken from the drill core recovered during the drilling program. These data are expected to be used to estimate bulk densities in future resource estimates. Eight Induced Polarisation (IP) lines have been completed in the northern area. Each line is approximately 1 kilometre in length lines are spaced 100m apart with a 50m dipole. The initial results indicate possible extension of the mineralisation with depth. Data will be interpreted including detailed re-processing and drill testing. A ground magnetic survey and drone magnetic survey have been completed. The results of these data are being processed and interpreted with the geological information provided from surface and in the drilling and will be
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions including the main geological 	 CEL Plans to undertake the following over the next 12 months Additional data precision validation and drilling as required; Detailed interpretation of known mineralized zones; Geophysical tests for undercover areas.

DirectorsMr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary
	interpretations and future drilling areas provided this	 Structural interpretation and alteration mapping using high resolution satellite data and geophysics to
	information is not commercially sensitive.	better target extensions of known mineralisation.
		 Field mapping program targeting extensions of known mineralisation.
		 Investigate further drilling requirements to upgrade both the unclassified mineralisation and
		mineralisation in the existing historical resources to meet JORC 2012 requirements;
		 Further metallurgical test work on lower grade mineralisation in the intrusions and oxidised
		mineralisation.

Section 3 Estimation and Reporting of Mineral Resources

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Database integrity	 Measures taken to ensure that data has not been corrupted by for example transcription or keying errors between its initial collection and its use for Mineral Resource estimation purposes. Data validation procedures used. 	Geological logging completed by previous explorers was done on paper copies and transcribed into the drill hole database. The data was checked for errors. Checks can be made against the original logs and core photographs.
		Assay data is received in digital format. Backup copies are kept and the data is copied into the drill hole database.
		The drill hole data is backed up and is updated periodically by a Company GIS and data team.
Site visits	- Comment on any site visits undertaken by the Competent Person and	Site visits have been undertaken from 3 to 16 October 2019 15 to 30 November 2019 and 1-19
	the outcome of those visits.If no site visits have been undertaken indicate why this is the case.	February 2020. The performance of the drilling program collection of data and sampling procedures were initiated during these visits.
Geological	- Confidence in (or conversely the uncertainty of) the geological	The interpretation is considered appropriate given the stage of the project and the nature of
interpretation	interpretation of the mineral deposit.	activities that have been conducted. The interpretation captures the essential geometry of the
	- Nature of the data used and of any assumptions made.	mineralised structure and lithologies with drill data supporting the findings from the initial
	 The effect if any of alternative interpretations on Mineral Resource estimation. 	underground sampling activities.
	- The use of geology in guiding and controlling Mineral Resource	The most recent resource calculation (2006 and 2003 – La Mancha) used all core drilling at the time
	estimation.	and detailed underground channel sampling collected by EPROM CMEC and La Mancha. Overlying
	 The factors affecting continuity both of grade and geology. 	assumptions included a reduction of the calculated grade in each resource block by a factor of 10% to account for possible errors in the analyses and samples. An arbitrary reduction factor was applied to
		the 2006 resource whereby the net reported tonnage was reduced by 25% for indicated resource
		blocks 50% for inferred resource blocks and 75% of potential mineral resource blocks. The reason for
		the application of these tonnage reduction factors was not outlined in the resource report. It is noted
		that at the time of this report La Mancha was in a legal dispute concerning the project with its joint
		venture partner and given the acquisition of a 200000 Oz per annum producing portfolio the project
		was likely no longer a core asset for La Mancha at that time. Additionally, under the original
		acquisition agreement La Mancha had to issue additional acquisition shares based on resource targets.
		The effect of removing the assumptions relating to application of the arbitrary tonnage reduction
		factors applied increases the overall resource tonnage by in excess of 50%. Removing these
ı		correction factors would bring the overall tonnage and grade close the earlier (2003 1999 and 1996)

Criteria	JORC Code explanation	Commentary
		tonnage and grade estimates albeit in different categories (lower confidence) which are considered more appropriate.
		The mineralisation is defined to the skarn and vein bodies detailed cross section and plan maps were prepared for these bodies with their shapes used in controlling the resource estimate.
		The structure of the area is complex and a detailed structural interpretation is recommended as this may provide a better understanding of the continuity of mineralisation and possible extensions to it.
		The deposit contains bonanza gold values and while very limited twinning has indicated acceptable repeatability a rigorous study of grade continuity needs to be undertaken as part of future resource calculations.
Dimensions	 The extent and variability of the Mineral Resource expressed as length (along strike or otherwise) plan width and depth below surface to the upper and lower limits of the Mineral Resource. 	For the historic resource no reliable information has been provided to the owner however through further ongoing investigation is being conducted by the owner to address this information gap.
Estimation and modelling techniques	 The nature and appropriateness of the estimation technique(s) applied and key assumptions including treatment of extreme grade values domaining interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used. 	The historic resource estimation techniques are considered appropriate. The 2003 and 2006 resources used a longitudinal section polygonal method was used for estimating resources with individual blocs representing weighted averages of sampled underground and/or areas of diamond drill pierce points with zones of influence halfway to adjacent holes. The area of the block was calculated in AutoCad directly from the longitudinal sections.
	 The availability of check estimates previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data. The assumptions made regarding recovery of by-products. Estimation of deleterious elements or other non-grade variables of economic significance (eg sulphur for acid mine drainage 	Check assaying by PG Consulting returned values in the check assay sample which were 3.4% and 13% greater for Au and Ag than the original assays. A number pf previous resource estimates were available to check the 2006 resource estimate when the arbitrary tonnage reduction factors are removed brings the overall tonnage and grade close the earlier (2003 1999 and 1996) tonnage and grade estimates albeit indifferent categories which are considered more appropriate.
	 characterisation). In the case of block model interpolation the block size in relation to the average sample spacing and the search employed. Any assumptions behind modelling of selective mining units. 	It was assumed only gold silver and zinc would be recovered and that no other by products would be recovered. This is viewed as conservative given metallurgical data pointing to the production of a saleable zinc concentrate.
	 Any assumptions about correlation between variables. Description of how the geological interpretation was used to control the resource estimates. 	Based on the preliminary metallurgy estimation of deleterious elements or other non-grade variables of economic significance was not required.
	 Discussion of basis for using or not using grade cutting or capping. The process of validation the checking process used the comparison of model data to drill hole data and use of reconciliation data if available 	The minimum mining width of 0.8m was assumed for veins less than 0.6m and for wider widths a dilution of 0.2m was used to calculate the grade.

Issued Capital 658.2m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary
		No assumptions were made regarding correlation between variables.
		The mineralisation is defined within skarn and associated vein deposits. Detailed cross section and plan maps were prepared for these domains with their shapes used in controlling the resource estimate. Long sections of the veins and skarn were taken and sampling was plotted and the blocks outlined considering this.
		Grade cutting was not used in the calculation of the resource and no discussion was given as to why it was not employed. It is recommended that a study be undertaken to determine if an appropriate top cut need be applied No data is available on the process of validation.
Moisture	 Whether the tonnages are estimated on a dry basis or with natural moisture and the method of determination of the moisture content. 	No data is available.
Cut-off parameters	- The basis of the adopted cut-off grade(s) or quality parameters applied	d. The Mineral Resource Estimate is above a cut-off grade of 3.89 g/t Au. This is based on the assumed mining cost at the time of the estimate.
Mining factors or assumptions	- Assumptions made regarding possible mining methods minimum mining dimensions and internal (or if applicable external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case this should be reported with an explanation of the basis of the mining assumptions made.	cyanidation combined
Metallurgical factors or assumptions	 The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case this should be reported with an explanation of the basis of the metallurgical assumptions made. 	 (cyanidation) and CIMM Labs (flotation) in Chile on 4 samples which all contain primary sulphide minerals and so can be considered primary, partial oxide or fracture oxide samples. The test work was conducted using a 150 micron grind which would appear to coarse based

JORC Code explanation Criteria Commentary Knelson concentrate tests with floatation of tailings were also completed. Applying a joint process Knelson concentrator and floatation of the tailings of the concentrator it is found that the global recovery is approximately 80% for gold. While the testwork was focused predominantly on gold recovery some rougher flotation testwork was undertaken targeting Zn recovery producing up to 85% recoveries. In sulphide samples this produced a Zn concentrate containing 42% Zn with grades in excess of 50% Zn in concentrate expected with additional floatation stages. The report concluded that it was possible to produce a commercial Au-Ag concentrate and a Zn concentrate. Extraction of gold and silver by cyanidation was tested on 3/8 and ¾ inch (9.525mm and 19.05mm) crush sizes that are designed to test a heap leach processing scenario. Bottle roll of these crush size resulted in 41-39% gold recovery and 31-32% silver recovery with high cyanide consumption. No tests have been done on material at a finer grind size. More recently, CEL has completed initial metallurgical test work on a 147 kg composite sample of drill core from GMDD039, GMDD040, GMDD041, GNDD043, GNDD003 and GNDD018. The sample is of skarn mineralisation in limestone that has a weighted average grade of 10.4 g/t Au, 31.7 g/t Ag, 3.2 % Zn, 0.15 % Cu and 0.46 % Pb. Separate tests on 2 kg sub-samples were done with differing grinding times, Knelson and Mosley table gravity separation techniques and floatation techniques to provide a series of gravity and floatation concentrates. Key results are: Combined gravity and floatation concentration process resulted in recoveries 85-94% for Au, 82-86% for silver and 77-80% for zinc. Cu had similar recoveries to Ag and Pb had similar recoveries to Zn. A simple gravity separation followed by a sulfide flotation process when re-combined produced a single product with a median grade of 47 g/t Au, 120 g/t Ag and 13% Zn with a recovered weight of 24-33% of the sample weight. Tailings fragment analysis indicates a grind of (pgn) 72-106 um. Generally, a coarser grind resulted in a higher % weight recovered to the concentrate with a corresponding lower grade without significantly impacting recovery. QEMSCAN analysis of the sample indicates much of the Zn not recovered is due to the presence of Zn oxide (franklinite) and silicates (hemimorphite). Sulphides present are dominated by pyrite and sphalerite. Also present are chalcopyrite, pyrrhotite, chalcocite, bornite and galena. Assumptions made regarding possible waste and process residue It is considered that there are no significant environmental factors which would prevent the eventual **Environmental** disposal options. It is always necessary as part of the process of extraction of gold from the project. Environmental surveys and assessments will form a part of future factors or determining reasonable prospects for eventual economic extraction to pre-feasibility. assumptions consider the potential environmental impacts of the mining and

Challenger Exploration Limited ACN 123 591 382 ASX: CEL Issued Capital 658.2m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary
	processing operation. While at this stage the determination of potential environmental impacts particularly for a greenfields project may not always be well advanced the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made.	
Bulk density	 Whether assumed or determined. If assumed the basis for the assumptions. If determined the method used whether wet or dry the frequency of the measurements the nature size and representativeness 	Densities of 2.7 t/m3 were used for mineralised veins and 2.6 t/m3 for wall rock. No data of how densities were determined is available.
	 of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs porosity etc) moisture and differences between rock and alteration zones within the 	The bulk densities used in the evaluation process are viewed as appropriate at this stage of the Project.
	 deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. 	CEL is collecting specific gravity measurements from drill core, which it is expected will be able to be used to estimate the block and bulk densities in future resource estimates. For RC drilling, the weights of material recovered from the drill hole is able to be used as a measure of the bulk density.
Classification	 The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (ie relative confidence in tonnage/grade estimations reliability of input data confidence in continuity of geology and metal values quality 	The Mineral Resource Estimate has both Indicated and Inferred Mineral Resource classifications under the National Instrument 43-101 code and is considered foreign. These classifications are considered appropriate given the confidence that can be gained from the existing data and results from drilling.
	quantity and distribution of the data). - Whether the result appropriately reflects the Competent Person's view of the deposit.	The reliability of input data for the 2003 and 2006 resources is acceptable as is the confidence in continuity of geology and metal values quality quantity and distribution of the data. Appropriate account has been taken of all relevant factors with the exception of studies into the appropriateness of the application of a top cut.
		The reported 2006 NI43-101 (non-JORC Code compliant Measured and Indicated) estimate for the Hualilan Project is measured resource of 164294 tonnes averaging 12.6 grams per tonne gold and 52.1 g/t silver and 2.5% zinc plus an indicated resource of 51022 tonnes averaging 12.4 grams per tonne gold and 36.2 g/t silver and 2.6% zinc plus an inferred resource of 213952 tonnes grading 11.7 grams per tonne gold and 46.6 g/t silver and 2.3% zinc. (Source La Mancha resources Toronto Stock Exchange Release April 7 2007 - Interim Financials) – See Table 1.
		The 2006 estimate did not include the east-west mineralised Magnata Vein despite the known mineralisation in the Magnata Vein being drilled on a 25 x 50-metre spacing. The 2003 NI43-101

Criteria	JORC Code explanation	Commentary					
		tonnage to the Magnat	(non-JORC Code compliant) estimate attributed approximately half of its measured and indicated tonnage to the Magnata Vein. The 2006 estimate also included arbitrary tonnage reduction factors of 25% for indicated category 50% for inferred category and 75% for potential category. The 2006 estimate also included a significant tonnage of Potential Category Resources which have not been reported. The reported 2003 NI43-101 (non-JORC Code compliant) estimate for the Hualilan project is a measured resource of 299578 tonnes averaging 14.2 grams per tonne gold plus an indicated resource of 145001 tonnes averaging 14.6 grams per tonne gold plus an inferred resource of 976539 tonnes grading 13.4 grams per tonne gold representing some 647809 ounces gold. (Source La Mancha resources Toronto Stock Exchange Release May 14 2003 - Independent Report on Gold Resource Estimate) – See Table 1. The 2003 Mineral Resource classification and results appropriately reflect the Competent Person's view of the deposit and the current level of risk associated with the project to date.				
		measured resource of of 145001 tonnes averagrading 13.4 grams per resources Toronto Store Estimate) – See Table 1					
		Historic 2003 NI43-10	01 (non-JORC Code comp	liant):			
		CATEGORY	TONNES	Au (g/t)	Ag (g/t)	Zn%	
		Measured	299,578	14.2			
		Indicated	145,001	14.6			
		Inferred	976,539	13.4			
		Historic 2006 NI43-10	01 (non-JORC Code comp	liant)			
		CATEGORY	TONNES	Au (g/t)	Ag (g/t)	Zn%	
		Measured	164,294	12.5	52.1	2.5	
		Indicated	51,022	12.4	36.2	2.6	
		Inferred	213,952	11.7	46.6	2.3	
Audits or revie	ws - The results of any audits or reviews of Mineral Res	Source estimates. The historic resource e	stimate has not been aud	lited.			

Criteria	JORC Code explanation	Commentary
		The earlier (1996 and 2000) Mineral Resource Estimates were audited and re-stated in a 2003 resource report. This independent report was done to NI-43-101 standard and the results of this report were released to the TSX. This report concluded that "Detailed resource calculations made by three different groups are seen to be realistic.
Discussion of relative accuracy/confidence	 Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits or if 	There is sufficient confidence in the data quality drilling methods and analytical results that they can be relied upon. The available geology and assay data correlate well. The approach or procedure are deemed appropriate given the confidence limits. The main two factors which could affect relative accuracy is grade continuity and top cut.
	 such an approach is not deemed appropriate a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates and if local state the relevant tonnages which should be 	Grade continuity is variable in nature in this style of deposit and has not been demonstrated to date and closer spaced drilling is required to improve the understanding of the grade continuity in both strike and dip directions. It is noted that the results from the twinning of three holes by La Mancha are encouraging in terms of grade repeatability.
	 relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. These statements of relative accuracy and confidence of the estimate should be compared with production data where available. 	The deposit contains very high grades and there is a potential need for the use of a top cut. It is noted that an arbitrary grade reduction factor of 10% has already been applied to the resource as reported.
		No production data is available for comparison